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Nitrogen (N) nutrition relies on root acqui-
sition of mineral resources, as well as on
symbiotic N2 fixation by soil bacteria in
legume plants.

Both processes are regulated by
systemic signaling pathways aiming to
adjust N acquisition depending on plant
N needs and assimilation capacities.
Plant nutrient acquisition is tightly regulated by resource availability and meta-
bolic needs, implying the existence of communication between roots and shoots
to ensure their integration at the whole-plant level. Here, we focus on systemic
signaling pathways controlling nitrogen (N) nutrition, achieved both by the root
import of mineral N and, in legume plants, through atmospheric N fixation by
symbiotic bacteria inside dedicated root nodules. We explore features conserved
between systemic pathways repressing or enhancing symbiotic N fixation and the
regulation of mineral N acquisition by roots, as well as their integration with other
environmental factors, such as phosphate, light, and CO2 availability.
Similar effectors acting in systemic
signaling pathways are shared between
these two N nutrition modes, including
hormones such as cytokinins and
peptide hormones, as well as related
NIN-like protein (NLP) transcription
factors.

Recent advances highlighted that
systemic signaling pathways linked to
N fixation and acquisition are tightly
related to phosphate systemic signaling.

Light and/or CO2 shoot environmental
factors impact N systemic signaling,
suggesting mechanisms allowing the
integration of N and C signaling and
metabolism.
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Root–Shoot–Root Communication Is an Essential Circuit to Regulate Plant N
Acquisition
Plant metabolism combines light-energy capture and carbon (C) fixation by photosynthetic
shoots with water and nutrient acquisition by roots. These two organs are challenged by very
different local environments, but need to cooperate to optimize nutrient supply and ensure
plant growth. To do so, in addition to the local perception of different nutrition-related cues in
the environment, dedicated systemic signaling networks integrating nutrient availability/needs
with growth/developmental status operate at the whole-plant level [1]. Plant vascular tissues
play an essential role in the long-distance communication between roots and shoots, with the
directionality of nutrient and mobile signal exchanges achieved by xylem and phloem vessels
[2]. Exhaustive analyses of xylem and phloem sap revealed, besides nutrients and metabolic
products of their assimilation, a diversity of molecules ranging from hormones to small and long
RNAs, signaling peptides, and proteins [3–7]. Understanding the role in systemic root and
shoot regulation of signals moving within this complex sap composition, as well as their origins
and targets, is a challenging but crucial objective to improve the efficiency of nutrient use and
homeostasis at the whole-plant level.

Plant N acquisition by roots is achieved by the import of variousmineral N sources from the soil as
well as, in some specific plants such as legumes, by the fixation of atmospheric N2 through a
symbiotic interaction with soil bacteria, collectively referred to as rhizobia, in a dedicated root
lateral organ, the nodule. Both root and nodule N acquisition are under the control of long-
distance homeostatic signaling, whose original characterization at a physiological level is
described in Box 1 for nodules and in Box 2 for roots. These regulatory pathways share similarities
as they both aim to regulate the plant N nutrition from different sources (atmospheric N2, soil
mineral NO3

−, or NH4
+) depending on: (i) environmental N availability; and (ii) plant N needs and

assimilation capacities that are notably driven by C metabolism. Symbiotic N2 fixation in root
nodules is a unique model to study this cost–benefit control of N acquisition by long-distance
signals. Indeed, a new organ dedicated to N acquisition is formed, the nodule, that is nonessential
when mineral N is available, in contrast to roots that have many other functions in addition to N nu-
trition. This specificity allowed efficient genetic screens to be performed to unravel the genetic basis
of symbiotic root nodulation [8]. In this review, the systemic pathways regulating N fixing root
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Box 1. Systemic Control of the N2-Fixing Nodule Symbiosis in Legume Plants

Nodule organogenesis and maintenance are energetically costly; thus, legumes must tightly control their number and
activity to balance nutrient gain and loss, thanks to a dedicated network of signaling pathways [119]. The first evidence
of systemic control of nodulation, in the early 1950s, came from nodule excision, variety or mutant grafting, and split-root
experiments in soybean, which highlighted that the host plant limits nodule numbers by integrating shoot and root cues
and regulations [120–122]. This systemic negative regulation of nodulation was named AON [123], as it originally
corresponded to a restriction of nodule number following a first wave of rhizobial infection events. Later, the observation
that the nodulation of super/hypernodulating mutants was also NO3

− resistant expanded the delineation of AON to nodulation-
repressive conditions mediated by high NO3

−, which for the plant is a cheaper source of N than N-fixing rhizobia [21]. More recent
results showed that systemic AON restricts rhizobial infections, which is likely to be by impairing the perception of rhizobial signals
[66,70,124]. N repression involves not only AON-dependent mechanisms, but also independent local and/or systemic
pathways controlling nodule number and rhizobial infections as well as later nodulation stages, including N fixation and assimila-
tion in nodules [38,125–127].

N limitation is a mandatory factor for the promotion of root nodule symbiosis. Split-root experiments showed that new
nodule formation and nodule expansion, rather than an increase of N-fixation activity in existing nodules, which seems
to be already at its maximum capacity, is systemically compensated in distal non-N-limited areas [126,128]. The stimula-
tion of mature nodulemetabolism and expansion would act through an independent pathway and rely on rapid reallocation
of sucrose to sustain nodulemetabolism alongwith the repression of nodule senescence and plant defense markers [129].
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nodulation in legumes will be used as a core to intertwine them with the knowledge gained on N
acquisition in roots of the non-nodulating reference plant arabidopsis (Arabidopsis thaliana). We
successively explore: (i) mechanisms ensuring the homeostatic repression of N acquisition;
(ii) mechanisms promoting N acquisition under low-N conditions where plant N needs are high;
and (iii) how shoot environmental conditions and C metabolism capacities may impact N systemic
signaling.

Repressing Root Nitrogen Fixation and Acquisition by Long-Distance Signaling
The autoregulation of nodulation (AON) homeostatic systemic signaling pathway restricts the
number of N-fixing nodules that form on legume roots dependent on previous rhizobial infections
and nodules (Box 1). In nodulated roots, AON signaling initiates with the production of specific
small secreted peptides named CLAVATA3/EMBRYO-SURROUNDING REGION RELATED
(CLE) peptides (Figure 1A). These 12-amino-acid-long peptides are conserved among legumes
and their expression is induced by rhizobia and high mineral N availability. AON-related CLE
Box 2. Systemic Control of Nitrogen Acquisition in Roots

Plants can acquire N from a range ofmineral sources, NO3
− and NH4

+, aswell as organic compounds (e.g., amino acids) [130–
132]. The acquisition of mineral N relies on root transporters belonging to three main gene families: NRT2s and NPFs/NRT1s
for NO3

− and AMTs for NH4
+ [133,134]. Their characterization advanced our understanding of N acquisition regulation by en-

vironmental cues, including the fluctuating availability of the ions themselves [135,136]. Moreover, an intricate relationship
was established with a role for some transporters in the control of root development independent of their transport activity
[137–139]. N acquisition (i.e., root transporters and development) is tightly regulated by a network of local but also systemic
signaling, integrating N external availability with global plant N needs, also in coordination with other nutrient resource
pools [140,141].

Early work using split-root experiments in rice, corn, and barley revealed that a systemic compensation response to N
deprivation exists in the distant root system comprising increased NO3

− uptake and root development [142,143]. Going along
with these physiological responses, NO3

−-supplied roots display a rapid increase in the expression of genes involved in NO3
−

transport and assimilation, observed in split-root experiments performed on either arabidopsis or medicago [60,127,144].
These physiological and molecular responses are controlled by systemic N-demand signaling that is likely to include several
pathways related to the heterogeneous NO3

− availability at the root-system level and/or to the NO3
−/N-limited status of shoots

[60,92,97,144–147]. Local NH4
+ availability is not compensated by an increase of NH4

+ uptake in arabidopsis [127,144] but
rather by AMT1.3-dependent enhanced proliferation of lateral roots [138], indicating some specificity of the N systemic
signaling with respect to the N source. However, all of these N acquisition components are similarly repressed by a systemic
N supply [60,127,148], suggesting a lower specificity for the repressive mechanisms. For instance, amino acid supply
represses N acquisition, and a role as a systemic inhibitory signal for N acquisition was thus proposed based on their ability
to circulate inside plants [149,150].

2 Trends in Plant Science, Month 2020, Vol. xx, No. xx



TrendsTrends inin PlantPlant ScienceScience

Figure 1. Regulation of Nitrogen Fixation and Acquisition by Systemic Signaling Pathways in Legumes and in
Arabidopsis (Arabidopsis thaliana). (A) In legumes, CLAVATA3/EMBRYO-SURROUNDING REGION RELATED (CLE)-

(Figure legend continued at the bottom of the next page.
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peptides are encoded by the rhizobium-induced MtCLE12, MtCLE13, and MtCLE35 genes in
Medicago truncatula [9–11,160], the rhizobium-induced LjCLE-Root Signal1 (RS1), LjCLE-RS2,
and LjCLE-RS3 in Lotus japonicus (the two latter genes being also induced by NO3

−) [12,13],
and the rhizobium-induced Rhizobia-Induced CLE1 (GmRIC1) and GmRIC2 genes and the
NO3

−-induced Nitrate-Induced CLE1 (GmNIC1) gene in soybean [14]. Peptide hormones’ activity
and/or stability frequently rely on post-translational modifications, and accordingly, some of these
CLE peptides were reported to be hydroxyprolinated and tri-arabinosylated in roots, by the Root
Determined Nodulation1 (MtRDN1) enzyme for MtCLE12 [15–17] and by LjPLENTY for LjCLE-
RS2 and LjCLE-RS3 [18–20]. CLE peptides can be detected in the xylem sap and were thus pro-
posed to be root-to-shoot mobile signals, perceived in shoots by the CLAVATA1-like (CLV1-like)
leucine-rich repeat receptor-like kinases (LRR-RLKs) MtSUNN (SUper Numeric Nodules) [9,21],
LjHAR1 (Hypernodulation and Aberrant Root 1) [19,22–25], and GmNARK (Nodule Autoregula-
tion Receptor Kinase) [14,26] (Figure 1A). Direct binding of LjCLE-RS2 to LjHAR1 was demon-
strated [19] and several co-receptors (LjKLAVIER, MtCLAVATA2, MtCORYNE) were shown to
interact with MtSUNN/LjHAR1 [27–29].
dependent long-distance signaling represses N-fixing nodulation (blue arrow). Symbiotic rhizobial infection triggers this
systemic signaling partially through the cytokinin (CK) signaling pathway involving the activity of the CK receptor CRE1 and
the Nodule Inception (NIN) transcription factor that are also required for nodulation (+). Nitrate (NO3

−) also triggers this CLE
systemic signaling through the activity of NIN-like protein (NLP) transcription factors. CLE peptide signals are perceived in
shoots by a CLAVATA1 (CLV1)-like receptor [leucine-rich repeat receptor-like kinases (LRR-RLKs); SUNN in Medicago
truncatula]. This induces the downstream expression of ISOPENTENYLTRANSFERASE 3 (IPT3) and thus CK biosynthesis
a putative nodulation ‘shoot-derived inhibitor’ (SDI) signal. In the M. truncatula legume, C-terminally encoded peptide
(CEP)-dependent long-distance signaling promotes N-fixing nodulation under low-N conditions (green arrow). CEP
peptide signals are perceived in shoots by a LRR-RLK receptor named Compact Root Architecture2 (CRA2). The MtCEP
MtCRA2 pathway also negatively regulates lateral root (LR) development locally in roots and promotes primary root (PR
growth. This pathway also systemically regulates the LR gravitropic set angle (GSA) by inhibiting shoot–root auxin
transport. These CLE and CEP systemic signaling pathways respectively repress and induce the expression of the mobile
miRNA miR2111, a nodulation ‘shoot-derived activator’ (SDA) signal that targets the accumulation of transcripts encoding
an E3 ubiquitin ligase, Too Much Love (TML), inhibiting nodulation. The thickness of arrows and lines represents the
strength of the signaling pathway. In addition, rhizobia promote through CK/CRE1 and NIN the expression of MtCEP7
promoting nodulation depending on MtCRA2, thus potentially allowing the switch from negative to positive regulation o
nodulation depending on changes in N availability and plant N status. (B) N provision (left) and N deficiency (right) systemic
signaling in arabidopsis. On the left (with the light-purple background), NO3

− signaling requires the NRT1.1/NPF6.3
transceptor and NLP7 in roots. The Teosinte branched1/Cycloidea/Proliferating cell factor1-20 (TCP20) transcription
factor interacts with NLP7 and intersects with N systemic signaling to control the primary nitrate response (PNR) and LR
development. In roots, NO3

− induces IPT3 expression and thus the biosynthesis of CK precursor [trans-Zeatin riboside
(tZR)] and active [trans-Zeatin (tZ)] forms, followed by their translocation into shoots. Their perception in shoots promotes
shoot growth (tZ) and shoot apical meristem development (SAM dvt) (tZR), through induction of the expression of the
transcription factor WUSCHEL (WUS), known to coordinate, with the CLAVATA (CLV) pathway, stem cell proliferation with
differentiation. tZ and tZR shoot integration controls shoot-to-root signaling enhancing PNR, LR development, and NO3

−

transport and modulating in shoots the expression of glutamine (Gln) metabolism, which may have a role in N systemic
signaling. On the right (with the light-green background), low N triggers a CEP/LRR-RLK pathway similar to that in
M. truncatula. The CEPR1 receptor homologous to MtCRA2 represses LR and PR development dependent on its activity
in roots and in shoots. Repression of LR emergence is also controlled by a root CLE/CLV1 signaling pathway induced by
low (shoot) N status and potentially also by CEP peptides. Low N availability also triggers in shoots the expression of class
III glutaredoxins, named CEP-Downstream (CEPD) 1/2, acting downstream of the CEP/CEPR1 pathway, and of CEPD-
like2 depending on shoot low-N status. These CEPD shoot-to-root mobile signals enhance the expression of the
AtNRT2.1 NO3

− transport gene and thus NO3
− uptake. CEPDL also enhances AtNRT1.5 expression and thus NO3

− root-to-
shoot transport (R➔S). tZ/tZR being required for CEPD-like2 expression, the interaction in shoots between ‘NO3

−/CK’ and
‘CEP/CEPD/CEPD-like’ systemic signaling may fine-tune N acquisition depending on root NO3

− availability and N demand
At the extreme left (with the yellow background), the integration between phosphate (P/Pi) and carbon (C) signaling with
the N systemic signaling network is depicted, via: (i) potentially the conserved miR2111/TML pathway, paralleling the
miR399/PHO2 pathway known to control Pi acquisition (Pi acqu.) in relation to the regulation of NRT1.1/NPF6.3; (ii) the
shoot-to-root Elongated Hypocotyl5 (HY5) transcription factor controlling its own expression, AtNRT2.1, and NO3

− uptake
and (iii) possible direct or indirect regulation of the expression of these various shoot systemic effectors (arrow pointing to
the gray-broken-line frame).
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In arabidopsis, local developmental functions of CLE peptides in meristems are extensively
described, but only a few links with nutrient and systemic regulations have been reported
[30,31]. A role for the CLE–CLV1 signaling pathway in the regulation of lateral root development
by N provision was, however, suggested [32]. Under N-limited conditions repressive for lateral
root growth, the expression level of CLE1, 3, 4, and 7 is induced compared with N-supply con-
ditions and the overexpression of these peptides represses the emergence of lateral root
primordia in a CLV1-dependent manner [32]. These CLE peptides and their receptor being
expressed in root pericycle cells and phloem companion cells, respectively, it was proposed
that this signaling module may negatively regulate N acquisition locally in roots, and would be
the target of an unknown systemic low-N signal (Figure 1B). Interestingly, in L. japonicus, the
har1mutant, affected in the LRR-RLKmost closely related to AtCLV1, also has a root architecture
phenotype, comprising shorter roots and an increased number of lateral roots [22]. The existence
of a root-to-shoot CLE-related signaling pathway regulating root architecture and N acquisition
remains to be further explored in arabidopsis, as well as the function in shoots of the AtCLV1
receptor in relation to N-related CLE peptides.

In legumes, the induction of CLE gene expression by NO3
− and rhizobia relies on transcription

factors of the NODULE INCEPTION (NIN) family. In both M. truncatula and L. japonicus, the
induction of MtCLE13 and LjCLE-RS1/2 expression by rhizobia depends on NIN, which binds
to their promoters [10,33,34]. Interestingly, cytokinin (CK) hormones, which are essential for the
establishment of nodules, activate NIN and MtCLE13 or LjCLE-RS1/2 expression [9,33,35–37]
(Figure 1A). A subset of NIN-LIKE PROTEIN (NLP) similarly mediates the CLE-dependent NO3

−

inhibition of nodulation in both L. japonicus andM. truncatula [38,39,160] (Figure 1A). Nitrate un-
Responsive Symbiosis 1 (NRSYM1)/LjNLP4 binds the LjCLE-RS2 promoter and activates its ex-
pression in response to NO3

−, as well as the NITRITE REDUCTASE 1 (NIR1)-encoding gene
involved in NO3

− assimilation but not nodulation, highlighting shared symbiotic and
nonsymbiotic root functions of this N/NLP/CLE module [38]. In M. truncatula, MtNLP1 and
MtNLP4 redundantly accumulate in the nucleus in response to NO3

− and interact with NIN to
potentially inhibit its function, including hampering the activation of the CK receptor MtCRE1
expression that is required for nodule initiation [39].

In arabidopsis, regulators of CLE peptide expression in response to N provision remain unknown.
Given that AtNLP7 is an important hub for the NO3

− root responses [40–43], its involvement may
be speculated, although no CLE peptide whose expression is induced by NO3

− provision has as
yet been identified in arabidopsis. Among the hundreds of genes identified as NLP7 targets
based on the combination of a ChIP approach with microarray transcriptomic analysis of nlp7
mutants and on an inducible NLP7 variant used to identify stable and transient targets in isolated
root cells by RNA-seq analysis, none corresponded to a CLE peptide [42,44]. It remains to be
explored whether other NLPs could nevertheless regulate the expression of CLE genes linked
to N signaling. In addition, several NLPs interact together via their Phox and Bem1 (PB1) domain,
as shown for MtNIN and MtNLP1, or with other transcription factors, which may allow coordina-
tion of the root response to different N environments [45,46]. AtNLP7 notably interacts with
Teosinte branched1/Cycloidea/Proliferating cell factor1-20 (AtTCP20) to regulate the response
of NO3

−-responsive genes and root meristem growth depending on N availability [46]. Interestingly,
AtTCP20 is a target in roots of N-demand systemic signaling [47], indicating that the AtNLP7/
AtTCP20 transcriptional complex may integrate local and systemic N signaling pathways
(Figure 1B).

Downstream of the AON-related CLE receptor activation in legume shoots, shoot-to-root
systemic effectors inhibiting root nodulation have been identified. In L. japonicus, the expression
Trends in Plant Science, Month 2020, Vol. xx, No. xx 5
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of the ISOPENTENYLTRANSFERASE3 (IPT3) gene and accumulation of the intermediate forms of
CKs [N6-(Δ2-isopentenyl) adenine riboside 5′-phosphates (iPRPs)] increase in shoots in response
to rhizobium inoculation depending on the LjCLE-RS/LjHAR1 signaling pathway. Moreover, rela-
tively high CK concentrations [6-benzylaminopurine (BAP) at 10−6 M] applied to shoots are
transported through the phloem towards the roots to inhibit nodulation, independent of
LjHAR1. Taking these findings together, it was hypothesized that CKs could be a shoot-to-root
signal inhibiting root nodulation in addition to their local roles in roots, including as an activator
of CLE gene expression [34,48,49] (Figure 1A). In soybean, a LjIPT3 ortholog, GmIPT5, is also
shoot induced by symbiotic conditions but independent of GmNARK, and CK application on
either shoots or roots similarly promotes or inhibit nodulation, depending on the low [10−7 M
BAP, iP, or trans-Zeatin (tZ)] or high (10−4 M BAP, iP, or tZ) concentration used, respectively
[50]. Thus, the negative role of shoot CKs on root nodulation downstream of the AON pathway
proposed in L. japonicus, implying a potential systemic action of CKs, may not be a general
feature of AON in all legumes.

In arabidopsis, AtIPT3 expression is triggered by NO3
− [51]. In roots, this ultimately leads to the

accumulation of the CK precursor tZ riboside (tZR) and of the biologically active tZ, which are
then translocated to shoots by the ABCG14 transporter [52–54]. Both tZR and tZ act as systemic
signals to promote shoot growth in response to NO3

− [55–58]. The shoot apical meristem fate is
likely to be modulated through the action of tZR on WUSCHEL expression [56,57] (Figure 1B),
WUSCHEL being directly activated by a subset of type B authentic response regulators (see
[59] for an overview). Moreover, in split-root experiments mimicking NO3

− heterogeneity, the inte-
gration in shoots of tZ/tZR transported from roots is also required to enhance lateral root devel-
opment and NO3

− transport in NO3
−-supplied roots, thus compensating for the partial N deficiency

[60–62] (Figure 1B). As shown in legumes, CKs are proposed to act at several levels of N signaling
since they also regulate locally the NO3

−-dependent primary root growth [63], lateral root
development, and NO3

− transport [64,65].

In legumes, another shoot-to-root signal conserved between L. japonicus and M. truncatula was
more recently proposed, corresponding to the miRNA miR2111, whose expression is shoot
specific and repressed by rhizobium inoculation, dependent on LjHAR1/MtSUNN [66,67]
(Figure 1A). This miRNA regulates post-transcriptionally the accumulation of Too Much Love
(TML) genes (LjTML in L. japonicus [66,68,69] and MtTML1/MtTML2 in M. truncatula [67,70]),
which encode nuclear E3 ubiquitin ligases acting in roots to inhibit nodulation. Although TML
targets remain unknown, one possibility is that they regulate the stability of symbiotic regulators,
and notably of NIN, which is a homeostatic target of the NIN/CLE/AON pathway [33]. Overall,
whereas the initial AON model suggested a nodulation ‘shoot-derived inhibitor’ (SDI) signal, as
could be CKs in L. japonicus (see earlier), the miR2111 shoot-to-root systemic effector behaves
as a nodulation ‘shoot-derived activator’ (SDA) signal that is repressed by the AON pathway
(Figure 1A).

In arabidopsis, the miR2111/TML regulatory module is evolutionarily conserved, suggesting
possible recruitment in the regulation of root responses to N availability beyond nodulation.
One of the two TML homologs (At3g27150) encoding an uncharacterized E3 ubiquitin ligase is
targeted by miR2111, which was detected in arabidopsis phloem sap in agreement with a func-
tion as a systemic shoot-to-root effector [71]. However, miR2111 accumulation is induced under
phosphate (Pi)-limited conditions and not by N limitation [71], in contrast to legumes (Figure 1B).
Interestingly, other F-box proteins that are also regulated by systemic miRNAs control nutrient
homeostasis depending on the combined N and P availability. The E3 ubiquitin ligase NITROGEN
LIMITATION ADAPTATION (NLA) and the E2 ubiquitin conjugase PHOSPHATE2 (PHO2)
6 Trends in Plant Science, Month 2020, Vol. xx, No. xx
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are targeted by the shoot-to-root mobile miR827 and miR399 miRNAs, respectively, under Pi-
limiting conditions, to inhibit their activity and to favor Pi acquisition [72–74]. Furthermore, the
phosphate starvation response (PSR) is conditional to NO3

− provision [75–77], depending on
the reciprocal regulation of the transceptor NPF6.3/NRT1.1 and of PHO2 [75] (Figure 1B).
This is achieved by local but also systemic N-related signals suggesting, that they are both
mandatory to forage for P acquisition [75].

Promoting Root Nitrogen Acquisition and Fixation by Long-Distance Signaling
As a mirror of the negative AON systemic pathway, a positive systemic pathway promoting
nodulation was more recently evidenced in M. truncatula, involving another class of peptide
hormone, from the C-terminally encoded peptide (CEP) family, whose expression is generally
enhanced in N-deficient roots [78] (Figure 1A). CEPs increase the number of nodules formed
[78] through a systemic pathway involving the activity in shoots of the Compact Root Architecture2
(MtCRA2) LRR-RLK receptor [79,80]. Under N-deficiency conditions, this systemic MtCEP/
MtCRA2 pathway upregulates in shoots the expression of the miR2111 shoot-to-root systemic
effector, promoting in roots the cleavage ofMtTML transcripts that encode an inhibitor of nodula-
tion (see above) [67]. The MtCEP/MtCRA2 pathway thus actively maintains roots competent for
nodulation under N-deficiency conditions (Figure 1A). Interestingly, the previously described
rhizobium- and N-induced MtSUNN AON pathway and the MtCRA2 pathway act independently
[81], but modulate antagonistically the same miR2111/TML regulatory module, which is thus a
central hub to regulate dynamically nodule number depending on environmental N availability
and on the plant N metabolic status [67]. The promotion of nodulation exerted by the MtCEP/
MtCRA2 pathway also involves the inhibition of the ethylene signaling pathway mediated by
SICKLE (SKL)/Ethylene Insensitive 2 (EIN2), which inhibits rhizobial infections potentially though
an interaction between MtCRA2 and MtSKL/EIN2 [80,82,83].

Interestingly, the MtCEP/MtCRA2 pathway also regulates locally root system architecture,
inhibiting lateral root development and being required for primary root growth depending on a
YUCCA-dependent local auxin biosynthesis pathway [78,79,81,83,84] (Figure 1A). cra2 mutant
roots perceive changes in the N environment but have altered responses to these conditions
[83]. Instead of repressing root growth and increasing lateral root density, NO3

− promotes cra2
mutant root growth and represses its lateral root density. In addition, this pathway regulates
systemically from the shoots the gravitropic set-point angle of lateral roots by limiting shoot
auxin transport to roots, ultimately allowing a wider foraging area for the root system [85]
(Figure 1A).

In arabidopsis, the first CEP peptide, AtCEP1, was identified in silico and then by liquid chroma-
tography–mass spectrometry (LC-MS) as a 15-amino-acid-long hydroxyproline peptide [86]. A
subset of AtCEP peptides, including notably AtCEP3, 5, and 9, accumulates in N-deficient
roots and inhibits primary root growth (AtCEP3 and 5) through a reduction of meristematic cell
number and of the size of the meristem, as well as the emergence of lateral roots (AtCEP3 and
5) and/or the gravitropic set-point angle of lateral roots (AtCEP3) [85,87–91] (Figure 1B). In addi-
tion, AtCEP1 upregulates systemically the expression of the AtNRT2.1 high-affinity NO3

− trans-
porter depending on the LRR-RLKs CEP receptor 1 and 2 (AtCEPR1/AtCEPR2) [92], closely
related to MtCRA2 in M. truncatula, although such a functional link was not established in the
latter plant (Figure 1B). It is noteworthy that the binding of the AtCEP1 peptide to these two
CEPR receptors was demonstrated [92]. A shoot-to-root systemic signal upregulating
AtNRT2.1 expression in roots downstream of the AtCEP/CEPR1 pathway was identified as
belonging to the class III glutaredoxin family, and so-called CEP Downstream1 (AtCEPD1) and
AtCEPD2. Split-root experiments revealed that these shoot-produced AtCEPDs are translocated
Trends in Plant Science, Month 2020, Vol. xx, No. xx 7
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through the phloem in the root system to upregulate AtNRT2.1 expression only in roots locally
supplied with NO3

−, through a still unknown mechanism implying an interaction with local N con-
ditions [93] (Figure 1B). Interestingly, it was previously shown that the class III glutaredoxins
AtGRX3/4/5/8, homologous to CEPDs, are regulated by NO3

− and CK, and negatively control
primary root growth [94], suggesting a complex involvement of GRXs in the NO3

−-dependent
root plasticity. Overall, the CEP/CEPR/CEPD pathway is a root-shoot-root circuit allowing plants
to adapt to heterogeneous NO3

− supply in soils.

In medicago, CEPD homologs were recently identified to be upregulated by N deficiency condi-
tions depending on the MtCRA2 receptor, both in shoots and in roots, in agreement with the role
of MtCRA2 in shoots and roots to regulate nodule or lateral root development, respectively
[67,79,81], but it remains to be established whether MtNRT2.1 homologs as well as nodulation
are targeted by aMtCRA2/MtCEPDpathway. Conversely, a relationship between the arabidopsis
CEP/CEPR pathway and the conserved miR2111/TML-like module remains to be explored.

Finally, in arabidopsis, another member of the class III GRX family expressed predominantly in
shoots under N deficiency, and denominated AtCEDPlike2 (AtCEPDL2), was recently shown to
regulate root NO3

− uptake and root-to-shoot transport [95] (Figure 1B). AtCEPDL2 acts indepen-
dent of AtCEPR1/2 but complements cepd1/2 mutations for NO3

− uptake [95]. Interestingly, the
maximal induction of AtCEPDL2 expression in shoots requires tZ accumulation [95] (Figure 1B).
As described in the previous section, tZ/tZR is a N-supply root-borne signal whose translocation
in shoots has a positive effect on NO3

− uptake, including on AtNRT2.1 upregulation, and on lateral
root growth [61]. Together, these results show that multiple systemic signals coexist to positively
regulate NO3

− uptake in plants. This would allow the integration of local N-deprivation pathways
(i.e., CEP/CEPR/CEPD) with global N-deprivation pathways (i.e., CEPDL) and local NO3

− supply
(i.e., tZ/tZR) to finely modulate N acquisition in NO3

−-heterogeneous environments (Figure 1B).

Influence of Shoot Environment on N-Related Long-Distance Signaling
The systemic regulation of root N acquisition and fixation relies on the perception of root-borne
signals modulated by local environmental soil conditions and by their integration in shoots. This
suggests that N acquisition may be modulated depending on the nutrient status of shoots; that
is, the N status but also C resources that can be provided to sustain root and nodule
Box 3. Differential Plant N Acquisition Efficiencies in Response to Elevated CO2

The Anthropocene era is synonymous with increased greenhouse gas emissions. In the 1750–2011 period, CO2 concen-
trations increased from 280 to 380 ppm, with a dramatic acceleration of emissions in the past 40 years (+2 ppm/year). The
consequences of associated climate changes on plant responses have been evaluated during these years, notably using
the Free-Air CO2 Enrichment (FACE) system that allows the effects of a CO2-enriched atmosphere to be simulated at
a whole-ecosystem scale and for several years [151]. Increasing CO2 concentrations in the atmosphere are expected to
promote plant biomass and yield due to a ‘CO2 fertilization effect’ that increases the photosynthesis rate, but several
studies have also revealed a limited beneficial effect in the long term in some plants, such as C3 grains (wheat, rice)
and legumes (field pea, soybean), leading to lower yields, protein content, and even nutritional food quality, because of
CO2/photosynthesis acclimation [151–153]. Whether elevated CO2 consequences for plant growth and protein content
also differ depending on the N inorganic form remains under debate [154,155]. Some studies point to inhibition of photo-
respiration and consequently of NO3

− assimilation [156,157], whereas other studies report no differences in N assimilation
and growth in C3 plants supplied with NO3

− or NH4
+ [158].

CO2/photosynthesis acclimation also strongly relies on the strength of the sink organ’s ability to consume photosynthesis C
products, since reduced sink strength negatively feeds back on photosynthesis [151]. The N2-fixing symbiosis is particularly
interesting in the context of a CO2-enriched atmosphere since nodules are strong C sinks and since the nodule N2 fixation
capacity depends on C allocation. Recent studies suggest that nodule N2 fixation activity may avoid the negative feedback
on photosynthesis provoked by elevated-CO2 conditions [159]. In this way, symbiotic N-fixing legumes are anticipated to
achieve higher yields and biomass productivity under elevated CO2, a condition that will be the future agricultural context
to consider.
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development as well as N assimilation, and thus by plant C fixation capacities and C allocation to
roots. Aboveground atmospheric environmental conditions, including CO2 levels as well as light
quality and quantity, are then anticipated to impact systemic signaling pathways targeting N ac-
quisition. The increase of atmospheric CO2 concentrations associated with global climate change
has various consequences depending on plant species and their N acquisition mode, mineral N
versus symbiotic acquisition (Box 3).

Data indicating that C provision is likely to impacts N systemic signaling effectors and pathways
regulating N acquisition have recently emerged. InM. truncatula, in addition to their transcriptional
upregulation in response to low NO3

−, the expression of most CEP genes is cumulatively induced
by low N and high CO2 (800 ppm) conditions [78]. In arabidopsis, the root architecture phenotype
of the cep3 mutant is observed not only under low-N but also under low-light conditions [87].
In addition, a subset of AtCEP genes (AtCEP5–AtCEP9) is upregulated by treatment with
metabolizable sugars, such as sucrose, and AtCEP5 restricts the promotion of lateral root growth
in response to sucrose or high light depending on AtCEPR1 activity in both roots and shoots
[96]. This suggests that the arabidopsis CEP/CEPR1 pathway, and thus likely, by analogy, the
M. truncatula CEP/CRA2 pathway, integrates N and C signals to modulate root system architec-
ture and growth (Figure 1B). In addition, the role of the AtCEPR1/MtCRA2 pathway in the regulation
by C provision of root NO3

− transport and assimilation should be investigated. Photosynthesis
products stimulate NO3

− uptake and NO3
− transporter gene expression [97,98]. To date, the

regulation of AtNRT2.1 and AtNPF6.3/NRT1.1 is linked to the oxidative pentose phosphate
pathway (OPPP) [99,100]. In addition, glucose itself promotes NRT2.1 protein accumulation
[100]. Interestingly, redox metabolism, including the OPPP output, may regulate NO3

− transport
depending on N and C signaling (see [101] for a review). On this line, the CEPD/CEPDL shoot-
bornmobile signals, being class III GRXs (ROXY6–9), may thus participate in such redox integration
of C and N regulation, although the role of these small proteins as sensors or modulators of the
redox state still needs to be investigated [102].

In arabidopsis, a systemic shoot-to-root function of the transcription factor Elongated Hypocotyl5
(AtHY5) was also proposed to control N acquisition and shoot/root development depending on
the C status of shoots [103]. AtHY5 was initially described as a positive regulator of photomor-
phogenesis, modulating hypocotyl growth depending on light availability, but was also linked to
various aspects of root development and to redox regulation [104–108]. Recently, AtHY5 was
shown to upregulate the expression of sucrose biosynthesis and efflux genes in light-grown
shoots (AtTPS1 for trehalose-6-phosphate synthase; SWEET11 and SWEET12) [103]. In addi-
tion, AtHY5 proteins were shown to be translocated systemically from shoots to roots through
the phloem and to bind in roots the AtNRT2.1 promoter to enhance its expression and root
NO3

− uptake [103] (Figure 1B). Interestingly, in L. japonicus, LjHY5/BZip ring finger (LjBzf) inhibits
nodulation but not lateral root development [109], although it is unknown whether this occurs
locally and/or systemically.

Finally, hormones are anticipated to mediate the integration of shoot local environmental C-related
signals with N systemic signaling. For instance, CK is a positive regulator of chlorophyll synthesis
as well as of chloroplast development [110,111] and might potentially favor C allocation to roots
and thus N acquisition. Conversely in arabidopsis, high-CO2 treatment, or treatment with sucrose
or glucose, induces in roots the expression of the IPT3, CYP735A2, and ABCG14 genes encoding
CK biosynthesis enzymes and a root-to-shoot CK transporter, leading to CK accumulation in roots
but also in shoots, and to the promotion of shoot growth [112]. By promoting CK biosynthesis,
elevated CO2 may thus modulate CK-dependent systemic signaling to enhance NO3

− acquisition
in roots [61,95] (Figure 1B).
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Outstanding Questions
What are the respective roles and
relevance of evolutionarily conserved
regulatory modules, including the
miR2111, CEPDs/CEPDLs, CK, and
HY5 mobile signals, in different
plants? Combined evolutionary and
functional approaches are needed to
understand the origin of these sys-
temic signaling pathways and how
they have evolved in different plants
to ensure robust regulation of the
different N acquisition modes.

What are the roles and target overlaps
of N-related NLP transcription factors,
notably regarding the regulation of
CLE and/or CEP signaling peptides?

The coexistence of various systemic
signals, such as peptides and
hormones, questions how these
molecular effectors interact and
impact N systemic signaling.

How are the various roles of different
types of CKs, locally in shoots versus
roots, and systemically, decoded
depending on the N availability/whole-
plant N status?

How are low-N/N-deficiency signals
and high-N/N-satiety signals, as well
as local and systemic regulation,
integrated?

How are the multiplicity of N-availability
signals that plants continuously per-
ceive in different parts of their bodies to-
gether with the whole-plant metabolic
status integrated, as well as in relation
to other nutrients than N (e.g., C, P)?
How are shoot systemic effectors
(miR2111, CEPDs/CEPDLs, CKs, etc.)
regulated by these other nutrient
inputs? Such questions will require
the use of integrated analyses.

Some systemic signals, such as CK, are
known to regulate vascular system
development. This raises the possibility
that systemic signals may by themselves
modulate vascular channeling and thus
long-distance communication.

Trends in Plant Science
In arabidopsis shoots, an overrepresented number of genes encoding enzymes involved in
glutamine metabolism show differential expression depending on NO3

− availability, and this
regulation relies on tZ/tZR translocated from roots [61]. The role of amino acids as a nutri-
ent status reporter at the whole-plant level, and in particular of glutamine, which is the first
amino acid issued from C and N assimilation, was a longstanding hypothesis that could
however never be validated experimentally [113]. By contrast, glutamine, whose accumu-
lation level may also rely on photosynthetic activity, is also known to influence CK biosyn-
thesis [112,114]. Together, this highlights that a reciprocal CK–glutamine interaction in
shoots may be a potential hub in systemic signaling to control root responses and inte-
grate C and N responses.

Concluding Remarks and Future Perspectives
In legumes, a mechanistic framework for the N-related systemic control of nodulation has recently
emerged involving antagonistic CEP/CRA2 and CLE/SUNN–HAR1 pathways differentially acti-
vated depending on N availability and/or on the whole-plant N status to regulate nodulation,
and likely more globally, root system architecture and N acquisition. This new knowledge allowed
a reconsideration of the historical AON model, which is activated not only by previously
established nodules but also by NO3

−, indicating that rhizobium is considered as an N source
by the plant. In addition, the initially proposed shoot-to-root systemic signal inhibiting nodulation,
which may involve CKs in some legume plants, also comprises the repression of a positive regu-
lator of nodulation produced only in shoots, themiR2111miRNA. Strikingly, the production of this
miRNA is actively maintained under low-N and/or N-deficit conditions by the CEP/CRA2 pathway
(Figure 1A). In addition to these two antagonistic systemic pathways regulating rhizobial infections
at the onset of nodule initiation, AON-independent systemic signaling pathways also exist to
regulate later nodulation stages including N fixation and assimilation (Box 1).

Whether through N2 fixation in symbiotic nodules of legume plants or NO3
− import from the soil at

the root surface of all plants, N acquisition is constantly modulated by a combination of local and
long-distance systemic signals. The parallel between the legume and arabidopsis knowledge that
is at the basis of this review allows us to highlight similarities and overlaps between N-related
systemic pathways regulating N-fixing nodules and root N acquisition. The respective roles of
the miR2111, CEPD/CEPDL, CK, and HY5 shoot-to-root signals remain, however, to be better
analyzed in parallel between arabidopsis and legume plants, as well as the potential role of
NLP transcription factors to regulate CLE and/or CEP signaling peptides related to N systemic
pathways (see Outstanding Questions). In addition, functional differences that exist between
arabidopsis and legume orthologous genes linked to N systemic pathways deserve to be
explored. For example, the CEP peptide regulation of root development occurs both systemically
from shoots and locally in roots in arabidopsis, whereas it acts only locally in M. truncatula roots
[80,96]. Another example is the LjHAR1/MtSUNN and AtCLV1 receptors that, despite being
the most closely related proteins, potentially diverged regarding their role in shoot and floral
meristems versus N-related systemic signaling [115].

Mechanisms regulating inorganic N acquisition exist in all plants and are thus expected to be
conserved in legumes, including the regulation of NO3

− transport (Box 2). The acquisition of
nodulation, implying the co-option of local and systemic N- (or P-) related regulatory circuits, thus
required the integration of N-fixing nodules and root N acquisition regulatory pathways. This also
ensures the robustness of repressive mechanisms against the detrimental effects of exaggerated
root and nodule development resulting from C over-allocation, as exemplified by the phenotypes
of peptide receptor mutants; either ‘supernodulating’, as sunn/har1, or ‘superrooting’, as cra2
(see Outstanding Questions).
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This review highlights in addition that we know little about the interactions between these different sys-
temic signaling pathways and how they integrate the multiplicity of signals that plants continuously
perceive in their various organs (e.g., rhizobium, N limitation, NO3

− provision in roots) (see Outstanding
Questions). For example, in arabidopsis the study of the potential interactions between the CK
(tZ/tZR) and CEPD/CEPDL pathways in shoots remains in its infancy (Figure 1B). Interestingly,
results obtained on the antagonistic regulation of the miR2111 by CRA2 and SUNN illustrate
the integration of the balance between permissive and repressive nodulation states according
to N provision (i.e., N limitation and rhizobium) [67] (Figure 1A). On the same line, a specific
M. truncatula CEP gene, MtCEP7, systemically promoting nodulation through the MtCRA2
receptor was recently shown to be induced by rhizobium and CKs, depending on the
MtCRE1 CK receptor and on the MtNIN transcription factor [34] (Figure 1A). Interestingly,
MtNIN binds both theMtCLE13 andMtCEP7 promoters and induces their expression through
NIN-binding sites required for their activation in response to rhizobium [33,34]. MtNIN thus
coordinates the regulation of specific CLE and CEP peptides from two different families antagonis-
tically regulating nodulation, potentially to allow switching from negative to positive regulation of
nodulation depending on changes in N availability and of the plant N status [34]. In addition to
the coregulation of specific CLE and CEP genes by a single transcription factor, these peptide
hormones may also regulate each other’s expression. In arabidopsis, AtCEP3 upregulates the ex-
pression of AtCLE3, 4, and 7, suggesting that the AtCEP3/AtCEPR1-dependent low-N response
may promote the low-N-dependent AtCLV1/CLE signaling pathway [88] (Figure 1B). Finally, differ-
ent types of CKs have various roles in shoots versus roots aswell as locally versus systemically, but
how these specificities are decoded depending on the N availability/whole-plant N status remains
to be explored.

The integration of local and systemic signaling associated with the heterogeneous distribu-
tion of nutrients other than N is also likely to be critical (see Outstanding Questions). Herein,
we covered interactions between C availability and N systemic signaling, but other nutrients
also have an influence. A role of N in Pi-limitation signaling has already been reported [75–77]
and one can anticipate a large integration between these two major nutrient signaling path-
ways. Interestingly, the low-Pi regulation of nodulation and of the arbuscular endomycorrhizal
symbiosis also requires the CLE/SUNN systemic pathway, thus mirroring the AON pathway
and so-called autoregulation of mycorrhization (AOM) [116–118]. The integration of these dif-
ferent systemic pathways ensuring integrated plant nutrition through the root acquisition of
various mineral nutrients and through mutualistic symbiosis establishment is key to under-
standing how plants adapt to fluctuating and heterogeneous environments (see Outstanding
Questions).
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