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Abstract: About 15,000 angiosperms are dioecious, but the mechanisms of sex determination in
plants remain poorly understood. In particular, how Y chromosomes evolve and degenerate, and
whether dosage compensation evolves as a response, are matters of debate. Here, we focus on
Coccinia grandis, a dioecious cucurbit with the highest level of X/Y heteromorphy recorded so far. We
identified sex-linked genes using RNA sequences from a cross and a model-based method termed
SEX-DETector. Parents and F1 individuals were genotyped, and the transmission patterns of SNPs
were then analyzed. In the >1300 sex-linked genes studied, maximum X-Y divergence was 0.13–0.17,
and substantial Y degeneration is implied by an average Y/X expression ratio of 0.63 and an inferred
gene loss on the Y of ~40%. We also found reduced Y gene expression being compensated by elevated
expression of corresponding genes on the X and an excess of sex-biased genes on the sex chromosomes.
Molecular evolution of sex-linked genes in C. grandis is thus comparable to that in Silene latifolia,
another dioecious plant with a strongly heteromorphic XY system, and cucurbits are the fourth plant
family in which dosage compensation is described, suggesting it might be common in plants.

Keywords: dioecy; sex chromosomes; Y degeneration; sex-biased genes; cucurbits

1. Introduction

Some 5 or 6% of the angiosperms, depending on the assumed total species number, have male and
female sporophytes, a sexual system termed dioecy [1]. Transitions from other sexual systems towards
dioecy are estimated to have occurred between 871 and 5000 times independently [1]. Chromosomes
and sex determination have been studied in few dioecious plants, and microscopically distinguishable
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(heteromorphic) sex chromosomes have been reported in about 50 species only [2]. An important
question is whether sex chromosomes evolve similarly in plants and animals. For example, the evolution
towards heteromorphy might be common between both lineages, with an autosomal origin of the
sex chromosomes, gradual recombination suppression between X and Y chromosomes, and genetic
degeneration of the Y chromosome [2–5]. Animal Y chromosomes tend to shrink over time and can
become tiny as in the old heteromorphic systems of mammals and Drosophila [3,4,6]. In plants, the size
of the Y chromosomes might evolve in a non-linear way, with Y chromosomes of intermediate age
being larger than their X counterparts, but very old Y chromosomes being smaller [2]. Systems with
large Y chromosomes have not been found in animals (with the single exception of the large neo-Y
of Drosophila miranda, [7]) and might be plant-specific; the reason for this is unknown. Silene latifolia
has one such system and has been intensively studied (e.g., [8–18]). Studying more plant systems, in
particular, those with larger-than-X Y chromosomes, is necessary to get a more precise picture of the
evolution of heteromorphic sex chromosomes in plants.

An important aspect of the evolution of animal sex chromosomes is dosage compensation, which
has been reported in old heteromorphic systems [19]. The genetic degeneration of the Y chromosome
causes a global decrease of Y gene expression through gene loss and gene silencing [6]. Without
compensation, this phenomenon would result in a dosage imbalance in males because many Y genes
have reduced expression, or are not expressed at all, compared to females where both X copies are
fully expressed [19]. Three such compensation mechanisms have been described: the mammalian
system, the Drosophila system, and the C. elegans system [20]. The mechanism in the fruit fly appears to
be straightforward, with a chromosome-wide doubling of X expression in males, re-establishing the
proper dosage [20]. The mammal and C. elegans mechanisms are less straightforward, with an apparent
doubling of expression on the X chromosome in both sexes and then a mechanism to correct expression
in females/hermaphrodites (X-inactivation in mammals, downregulation of both Xs in C. elegans, [20]).
In both lineages, dosage compensation seems to affect certain dosage-sensitive genes only [19–25]).
In birds, dosage compensation also is local, affecting only a few dosage-sensitive genes [26,27].

In plants, dosage compensation was first documented in S. latifolia [15] although its existence was
initially disputed as different patterns were observed for X/Y gene pairs and X-hemizygous genes
(lacking Y copies) in RNA-seq-based studies [13,15,28]. However, a study comparing sex-linked genes
found in BAC sequences and in RNA-seq data suggested that X-hemizygous genes were probably
under-represented in RNA-seq-based studies of S. latifolia [29]. Partial genome sequencing of S. latifolia
confirmed this finding and provided a large set of X-hemizygous genes [16]. This study also confirmed
that partial dosage compensation does exist in S. latifolia and that a fraction of both the X/Y gene
pairs and X-hemizygous genes are compensated [16]. Dosage compensation in S. latifolia seems to be
achieved through an upregulation of the maternal X chromosome in both sexes, which is reminiscent
of the scenario envisioned by Ohno [30] for the evolution of dosage compensation in mammals [17,31].
The precise molecular mechanism remains unknown [32], but epigenetic studies suggest that the two
female X chromosomes bear different epigenetic marks, implying different expression regulation [33,34].
Additionally, evidence for dosage compensation has been found in Silene otites, which has a ZW
system younger than the S. latifolia XY one [35], in Rumex rothschildianus, which has an XY1Y2 system
that is 8–10 Myr old [36], and in Cannabis sativa, which has an XY system that is 20–30 Myr old [37].
An important question is whether dosage compensation is a general feature of plant sex chromosomes.

Here, we focus on Coccinia grandis, a species in the Cucurbitaceae with a large Y chromosome [38–41].
C. grandis is a perennial, tropical liana that can produce fruits in the first year but can reach stem
diameters of >8 cm and ages of at least 20 years. The genus comprises 25 species, all of them dioecious.
It belongs to the tribe Benincaseae, where its sister genus (Diplocyclos) consists of four monoecious
species [42]. The C. grandis Y chromosome comprises about 200 Mb, making it four times larger
than the X chromosome, mainly due to the accumulation of transposable elements (TEs) and satellite
repeats, resulting in a 10% difference in the size of male and female genomes [39–41]. Plastid and
mitochondrial-like sequences also have accumulated on the C. grandis Y chromosome. The repetitive
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fraction of the male and female genomes of C. grandis is mainly composed of Ty1 copia and Ty3 gypsy
LTR elements. Of these elements, five are found in much greater abundance on the Y than on other
chromosomes [40]. Despite this heteromorphy, the species has been estimated to be only 3.1 Myr old
based on a molecular-clock model applied to a phylogeny with all 25 species [42]. C. grandis males
and females show no morphological differences except in their flowers, but between 2 and 8% of
the genes appear to be differentially expressed between males and females [43,44]. The species is a
promising system in which to study sex chromosome evolution because of its relatively small genome
size (~1 Gb) and its phylogenetic proximity to Cucumis [45], which includes the fully sequenced
Cucumis sativus and Cucumis melo genomes [46–49]. However, no sex-linked genes have been identified
so far and no reference genome (with identified sex chromosomes) is currently available in Coccinia.
Information about the extent of gene loss, the degradation of Y gene expression, the existence of dosage
compensation, the genomic distribution of sex-biased genes is thus currently missing.

Here, we identify sex-linked genes in C. grandis using a model-based method that we developed
and termed SEX-DETector [50] and which uses RNA-seq data to genotype the parents and F1 individuals
from a cross. For each SNP, the transmission from parents to offspring of each allele is analyzed.
Sex-linkage or autosomal segregation types have typical patterns that the SEX-DETector is able to
differentiate even when there are genotyping errors. For example, a bi-allelic SNP in which one
allele is transmitted exclusively from father to sons, while the other is transmitted from both parents
to all progeny will be identified as an X/Y SNP (with the male-specific allele being the Y allele).
The information of all SNPs in a gene is then combined into a probability for the gene to be sex-linked.
RNA-seq-based segregation analysis is both relatively cheap and efficient, and has been applied in
several plant systems in which sex-linked genes have been identified successfully, initially using
empirical methods [13–15,51,52]. More recently, SEX-DETector has been applied in Cannabis sativa,
Mercurialis annua, several Silene species, and Vitis sylvestris [17,35,37,50,53–55]. Based on the detected
sex-linked genes, we aimed to estimate the age of the sex chromosomes and test for Y degeneration,
dosage compensation, and sex-biased genes in Coccinia grandis.

2. Material and Methods

2.1. Plant Material

RNA sequencing data were obtained from the progeny and the parents of a cross between a male
and a female individual of the dioecious plant C. grandis, both grown in the experimental fields of
IISER Pune, India. Seeds from the cross were collected as soon as the fruit matured. The 24 seedlings
raised from these seeds took four to seven months to begin flowering, which allowed sexing of the
individuals. Flower buds at early developmental stages 3–4 (defined in [56]) were sampled from
plants being grown in the experimental fields. RNAs were isolated from 5 males (sons) and 5 females
(daughters) from the F1 generation as well as from their parents.

2.2. RNA Sequencing

The flower buds were sent to IPS2 Paris, France using RNA later ICE kits by Thermo Fisher. Total
RNA was extracted from 12 flower bud samples using Agilent’s spin column purification method,
mRNA was isolated with Oligo-dT Beads from NEB, and RNA-seq libraries were constructed with the
Directional Kit from NEB. Sequencing was performed at IPS2 Paris, France, with Illumina NextSeq500
following a paired-end protocol of library preparation (fragment lengths 100–150 bp, 75 bp sequenced
from each end). RNA samples were checked for quality, individually tagged, and sequenced (see
Supplementary Table S1 for library sizes). The sequence data are available in the ENA database under
the study accession number PRJEB39318.
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2.3. De Novo Transcriptome Assembly

A reference transcriptome was built for C. grandis using Trinity [57] on the combined libraries
of the 12 individuals (the parents and their ten offspring). For each individual, 100% identical reads,
assumed to be PCR duplicates, were filtered out using the ConDeTri v2.3 trimming software [58]. Reads
were then filtered out for sequencing adapters and low quality using ea-utils FASTQ processing utilities
v1.04.636 [59]. Cleaned reads from all male and female individuals were combined and assembled with
Trinity version 2.4.0 with default settings [57] leading to 276,225 contigs. Poly-A tails were removed
from contigs using PRINSEQ v0.20.4 [60] with parameters -trim_tail_left 5 -trim_tail_right 5. rRNA-like
sequences were removed using riboPicker version 0.4.3 [61] with parameters—i 90 -c 50 -l 50 and the
following databases: SILVA Large subunit reference database, SILVA Small subunit reference database,
the GreenGenes database, and the Rfam database. To ensure that X and Y gametologs are assembled in
consensus contigs (required for the SEX-DETector analysis, [50]), Trinity components were merged
using Cap3 [62], with parameter -p 90 and custom perl scripts. Coding sequences were predicted using
Trinity TransDecoder version 3.0.1 [57] and including Pfam domain searches as ORF retention criteria.
This assembly included 128,904 ORFs. To avoid mapping X and Y reads on separate contigs of the same
gene, we chose to work on the longest ORF predicted per Trinity isoforms, which resulted in a final
set of 82,699 contigs (see Table 1). BUSCO v3.0.2 (Benchmarking Universal Single-Copy Orthologs)
was used to assess the completeness of our transcriptome according to conserved gene content from
the Plant Dataset [63]. Results are shown for full assembly with all ORFs and for the longest ORF
per Trinity isoforms, hereafter referred to as our reference transcriptome (128,904 and 82,699 contigs
respectively) in Supplementary Table S2.

Table 1. Transcriptome assembly statistics of Coccinia grandis flower buds. Statistics in the final Trinity
transcriptome and the working transcriptome containing the longest ORF predicted per Trinity isoform.

Full Transcriptome Longest ORF per Isoform

Total contigs 128,904 82,699
Total assembled bases (bp) 103,275,123 27,290,670

Median contig length 552 836
Average contig length 801.18 836.83

Maximum contig length 16,296 16,296
Minimum contig length 297 297

N50 1029 1086
Total contigs longer than 1kb 30,795 21,587

GC content (%) 42.96 42.96

2.4. Functional Annotation and Gene Ontology Enrichment Analysis

De novo annotation of our transcriptome was performed using Trinnotate v3.1.0 [57] and resulted
in 59,319 annotations for 82,699 contigs (71.73%). Gene Ontology (GO) was assessed using GOSeq [64]
version 1.30.0 on R version 3.4.3 (2017-11-30) to identify over or under-represented GO terms (p-value
cutoff = 0.05).

2.5. Inferring Sex-Linked Contigs

The raw Illumina reads were mapped on the reference transcriptome using BWA mapping [65]
version 0.7.15 with the following commands: bwa aln -n 5 and bwa sampe. Mapping statistics are
shown in Supplementary Table S3. Mapped reads were kept with Samtools version 1.3.1 and individual
genotypes were predicted with reads2snps version 2.0.64 with paralog detection [66,67], option -aeb
which allows alleles to have different expression levels, and -par 0 to avoid removal of paralogous
positions by the paraclean program, which tends to filter out X/Y SNPs.

SEX-DETector version 1.0 (3rd September 2017) was used to infer contig segregation types using
a stochastic expectation maximization (SEM) algorithm [50]. The detected SNPs were filtered using
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Perl scripts to retrieve the autosomal or sex-linked SNPs, when their posterior probability to be either
autosomal or sex-linked was higher than 0.8. A contig was then inferred as sex-linked if its global
probability of being sex-linked was higher than the probability of it being autosomal and if it at
least had one sex-linked SNP without genotyping error. Amongst sex-linked genes, X-linked contigs
without a detectable homologous Y-linked copy are called X-hemizygous. Sex-linked contigs with no
Y expression were considered as X-hemizygous, the rest as X/Y.

2.6. Correcting Mapping Bias

To avoid biases towards the reference allele in expression level estimates, a second mapping was
done with GSNAP [68], a SNP-tolerant mapping software (see Supplementary Table S3). A SNP file of
X/Y SNPs identified in the first run of SEX-DETector was produced with home-made perl scripts as
described in [17]. Raw Illumina reads were mapped with GSNAP version 2017-11-15 and parameters
-m 10 and -N 1. Only uniquely mapped and concordant paired reads were kept for expression
analysis. SEX-DETector was run a second time on this new mapping, and the new inferences were
used afterwards for all analyses. No significant difference in the number of sex-linked inferences was
observed: 1196 X/Y and 168 X-hemizygous contigs were found as shown in Table 2.

Table 2. Results of the SEX-DETector pipeline on the C. grandis dataset. Number of contigs
assigned by SEX-DETector to an autosomal, X/Y or X-hemizygous segregation type before and
after SNP-tolerant mapping.

SEX-DETector with BWA
Mapping

SEX-DETector with GSNAP
SNP-Tolerant Mapping

Contigs in final assembly 82,699 82,699
Contigs with enough coverage to be studied 82,689 70,298

Contigs with enough informative SNPs to compute a
segregation probability 4320 3801

Contigs assigned to an autosomal segregation type 2889 3706
Contigs assigned to a X-Y segregation type 1239 1196

Contigs assigned to a X-hemizygous segregation type 192 168

2.7. Estimating the Age of Sex Chromosomes

The X and Y ORF sequences were produced by SEX-DETector using only X/Y segregating SNPs,
and pairwise dS was estimated by the codeml program implemented in the PAML suite [69] version
4.8 (see Supplementary Figure S1). The age of the sex chromosomes can be obtained from the X/Y gene
pairs with the highest synonymous divergence (the first to stop recombining, [3,4]). To get age estimates
in millions years, we used three Brassicaceae molecular clocks: 1.5 × 10−8 substitution/synonymous
site/year, derived from an assumed divergence time of Barbarea and Cardamine of 6.0 Myr [70], 7.1 × 10−9

substitutions/site/generation based on spontaneous mutations in Arabidopsis thaliana [71], and 4 × 10−9

substitutions/synonymous site/year, derived from a phylogeny calibrated with six Brassicales fossils [72].
We obtained the age estimates as follows: age (in years) = dSmax/rate, using the molecular clock
of [70] and [72], and age (in number of generations) = dSmax/2µ, using the molecular clock of [71] and
assuming a C. grandis generation time of 1 to 5.5 years.

2.8. Estimating Gene Loss

X-hemizygous genes (X-linked genes without detectable Y copies) have been used to infer the
extent of gene loss on Y chromosomes. This only gives a rough idea of gene loss as X-hemizygous genes
inferred by SEX-DETector comprise both genes with deleted or silenced Y copies (true lost Y genes)
and genes with Y copies that are expressed in some tissues but not in the one used for RNA-seq (false
lost Y genes). In addition, X-hemizygous contigs are inferred by SEX-DETector from X polymorphism,
as explained in [50], whereas X/Y contig inference relies on fixed mutations. X-hemizygous contigs can
therefore only be detected in contigs with X polymorphism, resulting in their underestimation [14].
We corrected for this by using the number of X-hemizygous contigs (168) relative to X/Y contigs with
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X polymorphism (424) that were listed in the output of SEX-DETector. Premature stop codons were
detected using a custom script on X and Y alleles.

2.9. Analysis of Expression Level Differences between X and Y Alleles

2.9.1. Allelic Expression Measurement

Normalized allelic expression of sex-linked contigs was computed as in [17] from SEX-DETector
output. Expression of X and Y alleles was computed using reads spanning diagnostic X/Y SNPs
only and were normalized using the library size and the number of studied SNPs in the contig.
Normalized expression levels were lower in males compared to females in autosomal contigs, as seen
in Supplementary Figure S2. This may be because a small subset of genes are very highly expressed
in developing male organs, as observed in other plants (e.g., [73]), resulting in an apparent lower
expression of housekeeping genes after normalization for total library size. We applied a correction
coefficient to male expression using the ratio of median male autosomal expression over median female
autosomal expression, to have a comparable median expression in males and females for autosomal
contigs. The same ratio was then applied to sex-linked contigs. The results of this correction are shown
in Supplementary Figures S2–S4. We used corrected expression levels to prepare Figure 1 and to
perform all downstream analyses.

Figure 1. Y/X expression ratio in C. grandis. Distribution of normalized expression ratio between X and
Y alleles. Total Y and X read numbers were summed at sex-linked SNP locations for each contig and
normalized for each male separately, then averaged across males to obtain the Y/X ratio. The median is
shown in red.

2.9.2. Analysis of Dosage Compensation in X-Hemizygous Contigs

Contigs with Xmale/2Xfemale ratios above 8 or under 0.125 were excluded as in [15] because
we do not expect dosage compensation to occur in these sex-biased genes. To test for dosage
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compensation, we filtered genes based on their log2 male-to-female expression ratio following [74].
X-hemizygous contigs that showed the same expression level in males and in females, i.e., with of
log2(male/female) of 0 ± 0.2 were considered as compensated and X-hemizygous contigs with twice
as much expression in females compared to males, i.e., with of log2(male/female) of −1 ± 0.2 were
considered as non-compensated (see Figure 2). A wider range of log2(male/female) of ±0.5, as used
in [27] for dosage-compensated contigs, had the same GO enrichment categories. A smaller range of
±0.1 did not have enough contigs per category to allow for a significant GO enrichment analysis.

Figure 2. X expression in males versus females in C. grandis. Distribution of the ratio between the
expression of the single X in males and the two X copies in females (log2 Xmale/2Xfemale) for all
sex-linked contigs. Distributions are shown for Y/X expression ratio categories in males: (A) Y/X>1;
(B) X/Y in ]0.5–1]; (C) X/Y in ]0–0.5]; (D) X-hemizygous genes (no Y copy expression). Total X read
numbers were summed at sex-linked SNP locations in each contig and normalized for each individual
separately, then averaged among males and females to get the Xmale/2Xfemale ratio. Distribution is
shown in log2 scale with its density curve. Contigs with Xmale/2Xfemale ratios above 8 or under 0.125
were excluded, which reduced the dataset to 1351 sex-linked contigs. Sample sizes are: 0, 168; 0–0.5, 460
(8 outliers); 0.5–1, 389 (2 outliers); >1, 334 (3 outliers). Medians are indicated for each Y/X ratio category.

2.10. Identifying Contigs with Sex-Biased Expression

We used the R packages DESeq2 [75] version 1.18.1, edgeR [76,77] version 3.20.8, and
Limma-Voom [78] version 3.34.8 in R version 3.4.3 (2017-11-30) to perform biased gene expression
analysis between males and females. DGE analysis was performed on the raw read counts
(untransformed, not normalized for sequencing depth). Contigs with a CPM (count per million) lower
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than 0.5 (corresponding to a count of 10) were filtered out. Regularized log-transformation of the
DESeq2 package was used to reduce variance of low read counts. Normalization with edgeR was made
with a tagwise dispersion and GLM normalization method (calcNormFactors, estimateTagwiseDisp,
and glmLRT functions). With LimmaVoom, counts were fitted to a linear model and differential
expression was computed by empirical Bayes (lmFit and eBayes functions).

Contigs identified with at least two methods with an FDR cutoff of 0.0001 were retained as
differentially expressed (see Supplementary Figure S5 and Supplementary Table S4). The three
methods do not have the same characteristics, and keeping contigs identified with at least two methods
as differentially expressed is more robust. DESeq2 and edgeR are based on the same method, but edgeR
has fewer false positives. LimmaVoom is very specific (see Supplementary Figure S5), and therefore also
has few false positives. Keeping contigs identified with at least two methods is a way to both remove
false negatives of DESeq2 and EdgeR and retain true positives that LimmaVoom tends to discard.

2.11. Statistics

Unless stated otherwise in the relevant sections, all statistical analyses and graphs were done with
R version 3.4.3 [79]. Fisher’s exact tests were two-tailed and p-values were adjusted with the FDR
method [80]. Exact adjusted p-values are provided for each test.

3. Results

3.1. Sex-Linked Genes Identified by SEX-DETector

We assembled a de novo transcriptome for C. grandis with male and female reads (82,699 contigs,
see Table 1). We used RNA-seq data from a C. grandis F1 cross mapped to our reference transcriptome to
identify genes located on the sex chromosomes (Supplementary Table S1). The raw reads were mapped
on open reading frames (ORF). A total of 45.76% reads were mapped with standard mapping and
49.24% with SNP-tolerant mapping (see Supplementary Table S3). We divided the contigs expressed
in buds into autosomal, sex-linked X/Y (defined as contigs having both X- and Y-linked alleles),
and X-hemizygous contigs (sex-linked, but with no Y-copy expression). These categories were inferred
from single nucleotide polymorphisms (SNPs) segregating in a family, using a probabilistic model [50].
Out of the 82,699 contigs, 5070 had enough informative SNPs to be assigned to a segregation type, 3706
were inferred as autosomal (73.10% of contigs with enough informative SNPs), 1196 as X/Y (23.59%),
and 168 as X-hemizygous (3.31%) (see Table 2).

3.2. Age of the C. grandis XY System

Age estimates are based on the divergence between X and Y copies and three Brassicaceae
molecular clocks (see Table 3). We obtained a maximum dS of 0.17 in all contigs and of 0.13 in contigs
longer than 1kb. The molecular clocks obtained from fossil-calibrated Brassicaceae phylogenies [70,72]
returned age estimates between 8.7 and 34.7 Myr old. The molecular clock obtained from Arabidopsis
thaliana substitution rates [71] returned estimates ranging from 9.3 to 12.1 Myr, when assuming a
generation time of 1 year. The true generation time of C. grandis, however, is unknown. One year is
the onset of sexual maturity in this plant and corresponds to a lower bond estimate of the generation
time. Coccinia grandis can reach 20 years in the wild, and individuals of 10 years are known from
botanical gardens (S.S. Renner, pers. com). Assuming an average generation time of 5.5 years (from
the minimum value of 1 year and the conservative maximum value of 10 years), yields much higher
age estimates for XY divergence (see Table 3).
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Table 3. Age estimates of the C. grandis XY system. These estimates were obtained using the maximum
synonymous divergence between X and Y chromosomes and several molecular clocks from Brassicaceae.
Estimates are shown in increasing order.

Molecular Clocks Age Estimates of the Sex
Chromosomes, with dS max = 0.17

Age Estimates of the Sex
Chromosomes, with dS max = 0.13

From [70], calibrated with an assumed divergence
time of Barbarea and Cardamine of 6.0 My 11.3 8.7

From [71], generation time = 1 year, assumed for
Arabidopsis thaliana 12.1 9.3

From [71], generation time = 1.5 year 18.2 13.9
From [72], calibrated with six Brassicales fossils 34.7 26.5

From [71], generation time = 5.5 year 66.8 51.1

3.3. Patterns of Y Degeneration

We looked for patterns of degeneration in our data. Males showed lower gene expression than
females for most of the genes, because a small subset of genes are very highly expressed in developing
male flower buds, resulting in apparent lower mean expression after normalization for total library
size (Supplementary Figure S2). After correcting for this expression bias between males and females,
we found that sex-linked genes are less expressed in males than in females (see Supplementary
Figures S2 and S4), Wilcoxon ranked test p-value = 2.57 × 10−8). To refine our analysis of Y chromosome
degeneration in C. grandis, we analyzed the allelic expression of genes inferred as sex-linked, which
showed that Y-linked alleles were significantly less expressed than X-linked alleles in males (see Figure 1,
Wilcoxon ranked test p-value = 3.06 × 10−13). Lost Y genes can be detected by SEX-DETector when the Y
copy is absent or unexpressed and are assigned as X-hemizygous. But given that X-hemizygous contigs
can be inferred from segregation patterns only if there is polymorphism on the X chromosome [14,50],
their number may be underestimated when segregation patterns are analyzed. We corrected for this as
described in Materials and Methods, which resulted in a corrected rate of gene loss of 39.62%. Another
hallmark of degeneration is the presence of premature stop codons. We detected 17 X (1.4%) and 56 Y
(4.7%) alleles with a premature stop, implying that premature stop codons are more abundant in Y
alleles (Fisher’s exact test p-value = 6.9 × 10−6). These observations clearly point to a significant level
of genetic degeneration on the Y chromosome in C. grandis.

3.4. Patterns of Dosage Compensation

To determine whether some genes are dosage-compensated, we first studied the log2 fold change
between male and female expressions. In the absence of dosage compensation, the Xmale/2Xfemale
expression ratio is expected to be 0.5, so the log2 of the ratio is expected to be−1, because males (XY) have
one X-linked copy and females (XX) have two. This is what we observed for contigs that do not show
reduced expression of the Y-linked allele relative to the X-linked allele, i.e., that have a Y/X expression
ratio close to 1 (median of log2 Xmale/2Xfemale ratio is −1.29 for contigs with Y/X > 1; see Figure 2).
For contigs with reduced Y expression (low Y/X ratios), we observed a higher Xmale/2Xfemale expression
ratio, which suggests that dosage compensation occurs for some genes (median of contigs with Y/X
≤ 0.5 is −0.85; see Figure 2). Finally, in X-hemizygous contigs, the distribution of Xmale/2Xfemale
expression ratio was bimodal, with a set of 31 contigs centered on a log2 Xmale/2Xfemale ratio of
−1 (no compensation), and 23 contigs centered on 0 (total compensation). This suggests that these
two sets of genes exhibited respectively no compensation and total compensation resulting in equal
expression in males and females. This trend is also present in a less visible pattern for X/Y contigs
with low Y expression (see Figure 2). To investigate dosage compensation further, we compared
expression of X-linked and Y-linked alleles in males and females for different Y/X expression ratio
categories (Figure 3), using female expression as a reference. We excluded 1% of the sex-linked contigs
that showed either an elevated Y expression (high Y/X ratios) or sex-biased X expression (very high
or very low Xmale/2Xfemale ratios). The Y/X ratio was computed in C. grandis males and averaged
between individuals, and used as a proxy for Y degeneration. In the absence of dosage compensation,
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Xmale/2Xfemale expression ratio is expected to be 0.5. Instead, we found that X expression in males
increases with decreasing Y expression, which results in similar expression levels of sex-linked contigs
in both sexes and provides further evidence for dosage compensation in C. grandis.

Figure 3. Allele-specific expression of sex-linked genes in both sexes in C. grandis. Expression levels
of sex-linked contigs in both sexes are shown for different Y/X expression ratio categories. Total read
numbers were summed at sex-linked SNP locations in each contig and normalized for each individual
separately; medians for all contigs and individuals of the same sex were then obtained. XX females,
median expression level of both X-linked alleles in females; X males, median expression level of the
single X-linked allele in males; Y males, median expression level of the Y-linked allele in males; XY
males, median expression level of the X-linked plus Y-linked alleles in males. To compare different
Y/X expression ratio categories, medians were normalized using the XX expression levels in females.
Two red lines indicate predictions for X males: full dosage compensation (X males = XX females −
Y males) and no dosage compensation (X males = 0.5 XX females). With increasing Y degeneration
(measured by the Y/X ratio), Y expression (blue bars) declines. We observed that X males (red bars)
does not follow the prediction of no dosage compensation and instead tends to increase with increasing
Y degeneration, following the ‘full dosage compensation’ line. The total expression in males (X males
+ Y males, grey bars) is mostly maintained across the different categories of Y degeneration and is
comparable to the expression in females (black bars). These patterns suggest dosage compensation is
taking place in C. grandis. The case of the X-hemizygous genes (Y/X = 0) is discussed in the text. Sample
sizes are: 0, 168; 0–0.25, 207; 0.25–0.5, 261; 0.5–0.75, 243; 0.75–1, 148; 1–1.25, 108. Error bars indicate 95%
confidence intervals of the median.

X/Y genes appeared to be depleted in hormone-related functions, such as response to ethylene and
negative regulation of ethylene biosynthetic process (GO:0009723 and GO:0010366). X-hemizygous
genes were depleted in dosage-sensitive functions such as macromolecular complex, intracellular
ribonucleoprotein complex, ribonucleoprotein complex, transferase complex, and membrane protein
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complex (GO:0032991, GO:0030529, GO:1990904, GO:1990234, and GO:0098796). However, these same
dosage-sensitive functions were enriched in X-hemizygous genes that show dosage compensation
when compared to all sex-linked genes, which suggests compensation targets dosage-sensitive genes.

3.5. Genomic Distribution of Sex-Biased Genes

We detected 3453 sex-biased genes with edgeR, 4881 with DESeq, and 538 with LimmaVoom
(Supplementary Figure S5). To establish a robust set of sex-biased genes, we retained genes that were
identified as sex-biased with at least two methods (3273 genes). Among these, 2682 (81.94%) were
male-biased and 591 (18.06%) female-biased. Genes with sex-biased expression were significantly
over-represented among sex-linked genes (see Supplementary Table S4, Fisher’s exact test p-value
< 2.2 × 10−16), with 241 out of 1364 sex-linked genes being sex-biased (17.67% of sex-linked genes,
with respectively 13.42% and 4.25% having male and female-biased expression), and 206 out of 3706
autosomal genes being sex-biased (5.56% of them, 4.45% with male and 1.11% with female-biased
expression). Out of the sex-biased genes that were localized on the sex chromosomes, 228 (94.61%) had
a X/Y segregation type (181 male-biased and 47 female-biased), and only 11 male-biased genes and 2
female-biased were X-hemizygous. X-hemizygous contigs were not enriched for differentially expressed
genes when compared to autosomal contigs (see Supplementary Table S4, Fisher’s exact test p-value
= 0.2302), which might be due to the small sample of X-hemizygous genes. Gene ontology analysis
revealed several biological processes that are significantly over-represented among female-biased
genes and under-represented among male-biased genes, or vice versa. GO categories related to
pollen production were enriched in male-biased genes, such as pectin catabolic process, pollen
wall assembly, sporopollenin biosynthetic process, pollen exine formation, pectin metabolic process,
pollination, anther wall tapetum development, pollen sperm cell differentiation, anther development,
rejection of self pollen, and regulation of pollen tube growth (GO:0045490, GO:0010208, GO:0080110,
GO:0010584, GO:0045488, GO:0009856, GO:0048658, GO:0048235, GO:0048653, GO:0060320, and
GO:0080092). Functions related to hormone signaling were enriched in female-biased genes, such
as response to auxin, auxin-activated signaling pathway, regulation of ethylene-activated signaling
pathway, brassinosteroid mediated signaling pathway, auxin polar transport, auxin mediated signaling
pathway involved in phyllotactic patterning, ethylene receptor activity, ethylene binding, auxin
transport, jasmonic acid and ethylene-dependent systemic resistance, and ethylene mediated signaling
pathway (GO:0009733, GO:0009734, GO:0010104, GO:0009742, GO:0009926, GO:0060774, GO:0038199,
GO:0051740, GO:0038199, GO:0051740, GO:0060918, and GO:0009871).

4. Discussion

4.1. Coccinia grandis XY are of Intermediate Age, Similarly to other Highly Heteromorphic Plant Systems

The divergence between X and Y copies in C. grandis reaches 0.13 to 0.17, and Brassicaceae-derived
molecular clocks returned age estimates from 8.7 to 34.7 Myr for their divergence (and up to >50 Myr
old assuming a generation time of 5.5 years, see Table 3). By contrast, a phylogeny that included
24 species of Coccinia and six outgroup taxa, calibrated with the divergence time of Coccinia and
Diplocyclos of 15 ± 2.6 Myr, yielded a divergence time of Coccinia grandis from its sister species (whose
sex chromosomes have not been studied) of 3.1 Myr [42]. In the other plant species with a huge Y
chromosome, S. latifolia, sex chromosomes have been dated to 11.5 Myr old based on mutation rate
measurements [81] or instead <1 to 10 Myr using molecular clocks ([9]: Brassicaceae and Ipomoea
rates yield ~10 Myr for the sex chromosomes of S. latifolia; [82]: fossil-calibrated Caryophyllaceae
phylogeny yields a divergence time of <1 – 3.75 Myr for S. latifolia and its sister clade). Silene latifolia
has a generation time of 1 year, and it is thus tempting to think that C. grandis sex chromosomes should
be as old or older than the ones of S. latifolia, unless mutation rate is a lot higher in C. grandis, which
would be unexpected [81].
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4.2. Coccinia grandis Y Chromosome Degeneration is Moderate, with an Unusually Reduced Y Expression

Our results suggest that not only is the Y chromosome of C. grandis accumulating repeats as
shown previously, but it is also losing genes and becoming silent. Out of the 1364 sex-linked genes,
168 did not have a Y-linked homolog, and we estimated a total gene loss of about 40%, which is
similar to what has been found in S. latifolia using a methodology similar to this study as well as other
methods [16,17,29,50]. The Y/X expression ratio, however, was lower than what has been found in
S. latifolia (0.63 vs. 0.77 respectively, [15]). The difference in size between the sex chromosomes is larger
in C. grandis compared to S. latifolia [39], which might indicate that the TE load is larger in the former.
TEs trigger host defense mechanisms, such as DNA methylation to silence them. This can affect genes
close to TE insertions and reduce their expression level [83,84]. The possibly higher TE abundance
on the C. grandis Y chromosome might trigger a higher level of gene silencing and thus explain its
unusually low Y/X expression ratio. To test this idea further, the full sequences of the sex chromosomes
in C. grandis and a DNA methylation study of TEs and neighboring genes would be needed.

4.3. Coccinia grandis Exhibit Sex Chromosome Dosage Compensation, a Phenomenon Observed in Several Plant
Systems

When analyzing the expression of X and Y copies in both sexes, we found that the reduction of
the Y copy was compensated by increasing expression of the X copy to maintain similar expression of
the pair in both sexes (Figure 3). This suggests that dosage compensation has evolved in C. grandis.
Again, a very similar pattern has been found in S. latifolia [15]. Compensation is probably partial, and
not all the sex-linked genes are compensated (Figure 2), something also observed in S. latifolia [16].
We mentioned above that X-hemizygous genes are underrepresented in RNA-seq-based studies such
as this one, and conclusions about dosage compensation are therefore more difficult to draw for this
category of genes (discussed in [29]). Here, we found that the signal of dosage compensation was
weak in X-hemizygous genes when taken together (Figure 3) as observed in S. latifolia with the same
approach [15]. However, when looking at genes individually as in [16], we found evidence that some
X-hemizygous genes are fully compensated (see bimodal distribution in Figure 2D). Strikingly, those
genes are enriched in dosage-sensitive functions in agreement with findings in animals [21–23]; [19,20,
24,25,27]. Evidence for dosage compensation has been found so far in Caryophyllaceae, Cannabaceae,
and Polygonaceae [15–17,35–37]. Cucurbitaceae are thus the fourth plant family in which dosage
compensation is documented.

This study did not allow us to identify a mechanism explaining the patterns of dosage compensation
that we observed. Studies of animal and plant aneuploids have revealed that immediate adjustments
of the genetic networks with expression levels changing at both sex-linked and autosomal genes are
possible [85–92]. Other studies have revealed that several specific mechanisms of dosage compensation
can evolve in parallel. In humans, for example, strong selection has maintained some essential
dosage-sensitive genes on the Y, despite this chromosome being extremely degenerated [93]. For some
other dosage-sensitive genes, the Y copy has been lost but this has been compensated by up-regulation
of the X copy in both sexes, and inactivation of one of the X in females [21,22]. Finally, for a number of
highly expressed tissue-specific genes that have lost their Y copy, dosage compensation took place
through a process of duplication of the X copy and translocation of the duplicate to an autosome [94].
In plants, this remains to be investigated. In S. latifolia, the best-studied plant for dosage compensation,
there are still debates about how dosage compensation is achieved [17,32]. In the present study,
we assumed that autosomal expression was unchanged by Y degeneration, and used autosomal
expression to further normalize male and female expression of sex-linked genes. Future studies should
check this assumption, and could include an outgroup to study the evolution of both autosomal and
sex-linked expression in C. grandis as in [17,53].
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4.4. Coccinia grandis Sex Chromosomes are Enriched in Sex-Biased Genes

We found that 4% of the genes expressed in C. grandis floral buds are sex-biased (Supplementary
Table S4), with a total of 3273 sex-biased genes identified (2682 male-biased and 591 female-biased),
in agreement with prior studies on sex-biased genes in C. grandis [43,44]. Our results support
enrichment for pollen production-related functions in male-biased genes as previously found in
C. grandis [43,44] and in other plant systems (reviewed in [5]). Female-biased genes, on the other
hand, were significantly enriched for hormone-signaling functions. These observations suggest that
sex-biased expression may have evolved to support contrasting biological functions in C. grandis
females and males. Male-biased genes are also significantly more numerous than female-biased genes,
a pattern that is common in dioecious plants (e.g., [5,53,95,96] but see [97–99]). Lastly, sex-biased genes
were found both on autosomes and on sex chromosomes but the latter were significantly enriched in
such genes, again a common pattern in dioecious plants (for review, [5]; see also [97,98]). The most
probable hypothesis is that sexually antagonistic selection favors sex linkage of sex-biased genes
involved in sexual dimorphism, but further work to identify the footprints of sexually antagonistic
selection (such as in [53]) will be needed to test this idea in C. grandis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/7/787/s1,
Figure S1: Distribution of pairwise synonymous divergence (dS) between X and Y alleles in X/Y contigs, Figure S2:
Expression levels of autosomal and sex-linked contigs in both sexes before and after correction, Figure S3: Male vs.
female autosomal gene expression ratio after correction, Figure S4: Male vs. female sex-linked gene expression
ratio after correction, Figure S5: Venn diagram of Differentially Expressed Genes identified by DESeq2, edgeR, and
LimmaVoom, Table S1: Library sizes and statistics for RNA sequencing from C. grandis male and female flower
buds, Table S2: BUSCO results for C. grandis flower bud transcriptomes, Table S3: Mapping statistics of all the
samples, Table S4: Number of Differentially Expressed Genes (DEG) per gene categories.
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