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Natural and induced loss of 
function mutations in SlMBP21 
MADS-box gene led to jointless-2 
phenotype in tomato
Maria Victoria Gomez Roldan1, Claire Périlleux  2, Halima Morin1, Samuel Huerga-
Fernandez2, David Latrasse1, Moussa Benhamed1 & Abdelhafid Bendahmane1

Abscission is the mechanism by which plants disconnect unfertilized flowers, ripe fruits, senescent or 
diseased organs from the plant. In tomato, pedicel abscission is an important agronomic factor that 
controls yield and post-harvest fruit quality. Two non-allelic mutations, jointless (j) and jointless-2 (j-2), 
controlling pedicel abscission zone formation have been documented but only j-2 has been extensively 
used in breeding. J was shown to encode a MADS-box protein. Using a combination of physical mapping 
and gene expression analysis we identified a positional candidate, Solyc12g038510, associated 
with j-2 phenotype. Targeted knockout of Solyc12g038510, using CRISPR/Cas9 system, validated 
our hypothesis. Solyc12g038510 encodes the MADS-box protein SlMBP21. Molecular analysis of j-2 
natural variation revealed two independent loss-of-function mutants. The first results of an insertion 
of a Rider retrotransposable element. The second results of a stop codon mutation that leads to a 
truncated protein form. To bring new insights into the role of J and J-2 in abscission zone formation, we 
phenotyped the single and the double mutants and the engineered alleles. We showed that J is epistatic 
to J-2 and that the branched inflorescences and the leafy sepals observed in accessions harboring j-2 
alleles are likely the consequences of linkage drags.

Abscission is common in plants which thereby separate senescent or damaged organs from their main body, reg-
ulate fruit load and release ripe fruits for seed dispersal. Separation is achieved by cell wall degradation between 
specialised cell layers forming the abscission zone (AZ) of leaves or flower parts. Before the shedding process 
itself, AZ cells resemble meristematic cells, being small with dense cytoplasm, lacking large vacuoles and any 
aspect of differentiation. Further development of the AZ proceeds by acquisition of competence to respond to 
abscission signals, execution of the abscission step per se by cell wall loosening and cell expansion, and formation 
of a protective lignified layer1, 2.

If abscission has important functions in plant development and reproduction, its suppression facilitates 
fruit harvest in crop production. In tomato, floral stems that remain attached to harvested fruits during picking 
mechanically damage the fruits during transportation, decreasing the fruit quality for fresh-market tomatoes and 
the pulp quality for processing tomatoes. In mutants that lack the flower AZ, pedicels and calyxes remain attached 
to the inflorescence axis so that fruits are harvested without any green tissues and can be more easily processed. 
The jointless pedicel trait has been successfully introgressed in small-fruited processing and fresh-market type’s 
tomatoes. In contrast, introgression of jointless trait in large-fruited tomatoes was more difficult to develop3.

Classical genetics showed that the jointless phenotype is caused, at least, by two independent loci called joint-
less (j) and jointess-2 (j-2)4, 5. The j mutant was first described in a domestic cultivar6 and shown to be pleiotropic. 
In addition to its pedicel AZ phenotype, j mutant shows alteration in inflorescence architecture. In j mutant, 
the typical truss is indeed converted into an inflorescence made of leaves and flowers due to the resumption 
of vegetative meristems in place of inflorescence meristems7–9. JOINTLESS (J) is a MADS-box gene located on 
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chromosome 114, 10 and is expressed in the inflorescence meristems9 and at very early stages of AZ formation11. 
The j mutant is a null allele, carrying a large deletion in the 5′-end of the coding sequence including the first 33 bp 
of the MADS domain4.

The J protein interacts physically with several members of the MADS-box family of transcription factors12. 
Recent advances focused on the formation of a complex between J and two of them, MACROCALYX (MC)13 
and SlMBP21, whose down-regulation causes incomplete pedicel AZ development11. It was therefore suggested 
that a MADS-box protein complex comprising, at least, J, MC and SlMBP21 regulates pedicel AZ development 
in tomato11, 14. Similar to J, MC suppression also conditions pleiotropic effects including inflorescence indetermi-
nacy and a leafy calyx13, 15, 16. The association of the lack of AZ with inflorescence and floral organ phenotypes in 
the j and mc mutants suggests that pedicel AZ formation may be an indirect effect of the genetic network regu-
lating inflorescence architecture in tomato7, 17. Recently, the j mutant has been instrumental for identifying genes 
expressed during formation of the AZ. Transcription factors that regulate meristem functions such as the tomato 
homolog of WUSHEL (LeWUS), GOBLET (GOB), LATERAL SUPPRESSOR (Ls) and Blind (Bl)13, 18 were found 
associated with AZ formation. These data provided molecular support to the similarities between AZ layers at 
pre-abscission stage and meristematic cells and suggested an ancient signalling system to assure indeterminate 
cell maintenance in the AZ19.

Despite that the characterization of j has brought new insights into the molecular mechanisms controlling AZ 
formation, its use for breeding was a failure. Introgression of j allele led to great foliation and low yield. In con-
trast, j-2 alleles were successfully introgressed, since they caused the absence of pedicel without major drawback7. 
The j-2 mutation was first discovered in a wild species, S. cheesmaniae (LA0166), originating from the Galapagos 
Island20 and later in a commercial field21. Beside the jointless pedicel character, j-2 is associated with bifurcate 
inflorescences producing an abnormally large number of flowers and conversion of sepals to leaf like structures21. 
Complementation tests showed that j-2 and j are non-allelic22; J-2 was mapped to the centromeric region of chro-
mosome 125, 23, 24 but the causal gene remains to be identified.

In this study, we conducted a combination of physical mapping and gene expression analysis to identify posi-
tional candidate genes associated with j-2 phenotype. The availability of a new version of the tomato genome and 
meta-analysis of expression data allowed us to pinpoint key candidates. Targeted knockouts, using CRISPR/Cas9 
genome editing method, validated our hypothesis and demonstrated that J-2 encodes the MADS-box protein 
SlMBP21. Molecular analysis of J-2 natural alleles revealed two independent loss-of-function mutants. One allele 
results from a transposon insertion that may have co-suppressed in cis the expression of SlMBP21. The second 
allele results from a stop codon mutation that leads to a truncated protein. Detailed phenotypic analyses of j j-2 
double mutant revealed that J is epistatic to J-2. The role of J-2 in AZ formation, in leafy sepals and in inflores-
cence branching is discussed.

Results
Jointless-2 accessions display light intensity-dependent penetrance. Two allelic j-2 mutants 
(LA0315 and LA3899) were obtained from the Tomato Genetics Resource Center (TGRC). Both mutants are in 
determinate genetic backgrounds carrying a mutation in the SELF PRUNING (SP) gene: LA0315 is in Pearson 
(LA0012) background and LA3899, in addition of sp and j-2 mutations already described in its Ohio8245 parent25,  
carries mutations B and u accounting for orange and uniform ripening fruits, respectively. Both j-2 alleles sup-
press the development of the AZ at the flower pedicels characteristic of WT plants. This phenotype was constant 
in the LA0315 mutant, where the flower pedicels were also longer than in WT Pearson (Fig. 1a). The LA3899 
mutant lacked flower pedicel AZ (Fig. 1a,b) but in some cases formed knuckle-like structures that externally 
looked like the AZ but did not contain the separation cell layers (Supplementary Fig. 1a,b,c,d). This phenotype 
occurred more obviously under low light intensity and in the proximal flowers of the inflorescences, but was 
much weaker under high light intensity and in distal flowers (Supplementary Fig. 1d, e). Occasionally, small 
leaves were observed in the inflorescences of the LA0315 mutant but were then at the base of the inflorescence 
and not produced after the flowers. Branching was also observed, giving the j-2 inflorescence a biparous instead 
of uniparous structure, and flowers exhibited longer sepals (Supplementary Fig. 2a). These leafy sepals remained 
attached to the fruit during its development and maturation (Supplementary Fig. 2b). Branched inflorescences 
were also observed in the LA3899 mutant under high light intensity whereas under low light intensity, branching 
of the inflorescence was less frequent (Supplementary Fig. 1d, e). Altogether, our phenotyping, in different grow-
ing conditions, points out that those j-2 mutations are pleiotropic and display different penetrance, depending 
on light conditions. These data also suggest that j-2 mutations in LA0315 and LA3899 are likely to be different.

Identification of candidate genes associated with j-2 locus. The j-2 mutation was discovered in 
a wild species, S. cheesmaniae (LA0166), originating from the Galapagos Island in Ecuador and is recessive24. 
Description from the TGRC indicates that j-2 mutation in LA0315 line derived from S. cheesmaniae, whereas 
j-2 in LA3899 seems to have appeared as a spontaneous mutation. In order to check that both j-2 mutants used 
in this study were affected in the same gene, a complementation test was performed. All the F1 offspring of the 
LA0315xLA3899 cross showed the jointless phenotype, confirming that the j-2 mutations in LA0315 and LA3899 
stocks were indeed allelic (Supplementary Fig. 3a). To exclude the possibility that the absence of the AZ resulted 
from the inactivation of J (Solyc11g010570), we analyzed the expression of J in lines LA0315 and LA3899, har-
boring j-2 alleles. As expected, the expression of J was not different than in WT plants (Supplementary Fig. 3b).

A restriction fragment length polymorphism (RFLP) analysis mapped j-2 in a 2.4 cM interval between CD22 
and TG618 markers on chromosome 1224. These two markers delimited a large heterochromatic region from 
each side of the centromere, making the precise localization of the J-2 locus difficult to predict. The complete 
sequencing and annotation of the tomato genome allowed us to re-examine the physical mapping and to identify 
positional candidates that map between CD22 and TG618 markers. Version Sl.2.50 of the genome predicted a 
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total of 987 genes in J-2 genetic interval (Fig. 2, Supplementary Fig. 4a). To reduce this large list to a minimum 
number of candidate genes, we carried out a meta-analysis of RNAseq data searching for genes that are highly 
expressed in the flower pedicel AZ compared to leaf AZ26. Among the 987 genes that physically mapped to J-2 
interval, 62 were found as differentially expressed in the flower pedicel abscission zone (FAZ) compared to the 
leaf abscission zone (LAZ). We selected 8 of them, based on the expression level (average read depth on FAZ > 50) 
and the function of the encoded proteins (transcription factors, components of hormonal pathways, develop-
mental genes) (Fig. 2, Supplementary Table 1). Among the 8 selected candidates, the gene that showed the most 
significant differential expression between LAZ and FAZ (Log2 ratio = −8,41) was a MADS box transcription 
factor (MADS11, Solyc12g038510). The 7 other candidate genes encode transcription factors or hormone sig-
naling regulators: a gibberellin-regulated protein (Solyc12g042500), an aquaporin (Solyc12g044330), a jasmon-
ate ZIM domain-containing protein (Solyc12g049400), a multidrug resistance protein (Solyc12g019320), a C2 
domain-containing protein (Solyc12g040800), a SQUAMOSA promoter binding protein (Solyc12g038520) and 
a MYB transcription factor (Solyc12g044610). To further reduce the list of candidate genes, we compared their 
expression levels in WT and j-2 mutants (Fig. 3). cDNA was prepared from pedicel segments harvested where the 
AZ formed (WT) or should have formed (j-2), at the time of flower anthesis. The transcript levels of two candidate 

Figure 1. Phenotypes of the j-2 tomato mutants. (a) Inflorescences of WT var. Pearson (LA0012), j-2 (LA0315) 
and j-2 (LA3899) mutants are shown. White arrows indicate abscission zone in WT plants. Scale = 1 cm.  
(b) Longitudinal sections of flower pedicels stained with phloroglucinol, showing the presence of the AZ in WT 
and not in the j-2 mutants. Scale = 2 mm.

Figure 2. Method used to identify positional candidate genes for j-2. Representation of TG618 and CD22 
markers on the genetic, cytogenetic and physical maps on chromosome 12 of the tomato genome (modified 
from Budiman M.A. et al.24). Total numbers of annotated genes in TG618-CD22 genetic interval, and of 
selected genes particularly expressed in flower pedicel abscission zone are also displayed. See the complete list in 
Supplementary Table 1.
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genes (Solyc12g042500 and Solyc12g038510) were reduced to a great extend in both j-2 mutants whereas expres-
sion of the other six was similar in WT and in one or the other j-2 mutant. Based on these expression analyses, 
we reduced the list of candidate genes to Solyc12g042500 and Solyc12g038510 genes. Solyc12g038510 was previ-
ously annotated as SlMBP21 and associated with AZ development11. Nevertheless, the authors excluded SlMBP21 
as a candidate causing j-2 mutation, because the assembly of the tomato genome (version Sl.2.40) localized 

Figure 3. Expression levels of candidate genes in j-2 mutants, relative to WT. The selected genes are expressed 
in the AZ and located in TG618-CD22 genetic interval. WT (P, Pearson) and j-2 flower pedicels were used as 
plant material. Bars = SDVE.
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Solyc12g038510 outside the TG618-CD22 interval (Supplementary Fig. 4b). The second gene, Solyc12g042500, 
has never been associated with AZ formation.

A Rider retrotransposon insertion underlines jointless-2 allele in line LA3899. We started by 
investigating whether J-2 locus corresponds to the Solyc12g042500 gene. We sequenced Solyc12g042500 in WT 
and LA0315 and LA3899 lines harboring two different alleles of j-2. We did not detect any mutation associated 
with j-2 alleles in Solyc12g042500.

Then we analyzed DNA sequence of Solyc12g038510, which codes for a MADS-box protein. We designed prim-
ers to amplify different regions of Solyc12g038510 (five segments between the 5′UTR and the 3′UTR) and ampli-
fied fragments in both j-2 lines and WT. Interestingly, in line LA3899, the 587-bp expected fragment from the 
first PCR (5′UTR-first intron) was not amplified, but a longer fragment was obtained. Sequence analysis showed 
that a retrotransposon of the Rider family was inserted 23 bp downstream of first exon’s end, suggesting that the 
insertion of the retrotransposon is the cause of the jointless phenotype in this line (Fig. 4a,b, Supplementary 
Fig. 5a and b). Similar to the Rider retrotransposon detected in the sun locus27, Rider in j-2 (LA3899) was flanked 
by two 398-bp identical long terminal repeats (LTR 1 and 2) and a 5-bp target site duplication (TSD) sequence 
ATATG (Fig. 4a, see Subtext 1). Transposable elements constitute a large fraction of plant genomes and are sub-
jected to epigenetic modification affecting the expression of linked genes, notably by the genomic spreading of 
DNA methylation. Because insertion of the Rider transposon in Solyc12g038510 in line LA3899 was detected in 
a noncoding sequence (first intron) and correlated with no expression of the gene, we hypothesized that Rider 
insertion caused spreading of DNA methylation to nearby Solyc12g038510 gene in j-2 (LA3899) line. We exam-
ined the DNA methylation status of the Solyc12g038510 locus using immunoprecipitation of DNA fragments with 
a 5′-methylcytosine antibody (MeDIP) in combination with quantitative PCR analysis. The methylation state was 
assayed in the AZ of pedicel samples from WT and LA3899 line. As expected, we observed strong methylation of 
Rider retrotransposable element, independently of the genetic context (Supplementary Fig. 6). We searched for 
potential spreading of DNA methylation from Rider to Solyc12g038510 neighboring introns and exons. The first 
exon and the first intron, immediately flanking the Rider insertion, were hypermethylated in the j-2 (LA3899) line 
compared to WT (Supplementary Fig. 6). Altogether these data suggest that spreading of DNA methylation from 
Rider insertion may be the cause of the non-expression of Solyc12g038510 gene in line LA3899.

As j-2 mutations in LA3899 and LA0315 are allelic, we expected to identify a disruption of Solyc12g038510 in 
line LA0315 too. Sequencing of Solyc12g038510 in line LA0315 revealed a single base substitution (T > A) in the 
second exon causing a premature stop codon in the protein sequence (Fig. 4c, Supplementary Fig. 5c). Consistent 
with this, the same stop codon mutation was also found in the LA0166 line from Galapagos that served as genetic 
background to introgress j-2 allele in LA0315.

CRISPR/Cas9-induced deletions in Solyc12g038510 lead to jointless phenotype. To unam-
biguously validate the identity of the Solyc12g038510 gene as J-2, we created loss-of-function mutations using 
CRISPR/Cas9 technology. Two single-guide RNAs (sgRNAs) were designed to target the third and fourth exons 
of Solyc12g038510 (Fig. 5a). Both constructs led to deletions in Solyc12g038510 that correlated with absence of 
AZ. For deep analyses, we chose an allele (CR-slj-2b) where an out-of-frame deletion had introduced a prema-
ture stop codon. Like the natural j-2 mutants and the SlMBP21-AS RNAi transgenic plants11, CR-slj-2 mutants 
displayed pedicels lacking AZ (Fig. 5b). Interestingly, leafy-like sepals and elongated fruits were not observed 
in CR-slj-2 lines as earlier described in j-2 mutant (LA0315), suggesting that these characters are likely the con-
sequence of linkage drags during introgression of j-2 alleles into cultivated tomatoes. Similarly, only uniparous 
inflorescences were obtained in CR-slj-2 lines, demonstrating that the inflorescence branching, observed in 
LA0315 plants or in LA3899 plants growing under high light conditions, is j-2 independent. We therefore ana-
lyzed whether the knuckle-like structures observed in j-2 plants (LA3899) growing under low light conditions 
were the result of residual J-2 expression. RT- qPCR analysis in pedicels of the first flower of the inflorescence of 
j-2 (LA3899) growing under low and high light intensity showed that the knuckle-like phenotype is not corre-
lated with J-2 expression but most probably due to the activity of other genes involved in AZ formation (J or MC) 
(Supplementary Fig. 7).

Expression analysis of J-2 and interacting genes. We examined J-2 expression pattern by in situ 
hybridization in WT and j-2 mutants. J-2 mRNA was detected in flower meristems of WT and j-2 line harboring 
the stop codon (LA0315) but not in line LA3899 harboring Rider retrotransposon. At later stage, J-2 transcripts 
were detected in the region of the AZ in the WT only (Supplementary Fig. 8). These results suggest that J-2 is 
expressed during early inflorescence development and is later required for the formation of the AZ. Similar results 
were described by Liu et al.11 analyzing the SlMBP21 gene expression pattern.

Since SlMBP21 was previously shown to form, with J and MC, a higher order protein complex mediating 
AZ formation11, we investigated whether j-2 mutations affected the expression of J, MC and downstream genes 
(Fig. 6). Expression of J and MC was no different in the j-2 mutant (LA0315) than in WT and genes involved in 
AZ formation including Ls, LeWUS and Bl were specifically down-regulated in the AZ of j-2 mutant. By contrast, 
GOB did not shown significant changes.

The j mutant, in addition of AZ defect, exhibits leafy inflorescences due to resurgence of vegetative meristems 
in the iterative process making the sympodial inflorescence4, 7, 9 (Fig. 7a). By contrast, j-2 mutants did not show 
the same phenotype. In order to further analyze the interactions between J and J-2 genes, we phenotyped double 
j j-2 mutants produced by Philouze22 in a determinate (sp) background. Sequencing analysis confirmed that this 
line contains the j-2 allele with the stop codon (as that from LA0166 and LA0315). The double mutants formed 
leafy inflorescences with jointless flowers and hence had the same phenotypes than j mutant, indicating that j was 
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epistatic to j-2 (Fig. 7b). Fruits were also elongated as observed in the distal part of the truss of the j-2 (LA3899) 
and sometimes in j-2 (LA0315) mutants (Supplementary Fig. 1b, 2a). Expression data confirmed down-regulation 
of J in the single j mutant, and of J and J-2 genes in double j j-2 mutant, whereas expression of MC was similar to 
WT in both j and j j-2 mutants (Fig. 7c and d). Nevertheless, fruits of CR-slj-2 lines did not show elongated form 
(Fig. 5), indicating that this phenotype does not result from the loss of function of J-2.

Figure 5. A CRISPR/Cas9-engineered mutation in J-2 gene abolishes development of the flower AZ. (a) Two 
sgRNAs (red arrows) were designed to target the second and third exons of the J-2 gene. Types of DNA lesions 
generated in two T1 CRISPR/Cas9 J-2 (CR-slj-2) plants and identified by PCR genotyping from loss-of-function 
alleles CR-slj-2a and b (bold red: sgRNA targets, bold black: PAM site, dashes: deleted nucleotides, blue letters: 
inserted nucleotides). (b) Representative inflorescence of WT and CR-slj-2b mutant. Arrows indicate the AZ in 
WT (red) or the expected place of AZ in CR-slj-2b (white).

Figure 4. Mutations found in the j-2 mutants (LA0315 and LA3899). (a) Insertion of a Transposable Element 
(Rider) in LA3899 and base substitution introducing a stop codon in LA0315. (b) Size of the fragments (5460- and 
587-bp) amplified between the first exon and the first intron in j-2 (LA3899) and WT genomic DNA (compared 
to 1 kb DNA Ladder). The largest band was extracted and cloned in the pGEM-T Easy vector for sequencing. (c) 
Sequencing results of WT and j-2 (LA0315) PCR products amplifying the second exon of the gene.
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Discussion
More than 20 years ago, Zhang et al.5 demonstrated that the J-2 locus, derived from the wild accession S. chees-
maniae (LA0166), was located on chromosome 12 and was flanked by two markers, CD22 and TG618. Even if 
this mutation had been extensively used during the last 60 years in the tomato processing industry, the identity 
of the mutated gene remained unknown. Using the tomato genome sequence and transcriptomics data from 
flower pedicel AZ, we identified a candidate gene encoding a MADS-box protein. Gene sequencing allowed us to 
confirm that j-2 accessions (LA0315 and LA3899) from the tomato germplasm (TGRC) carry two independent 
mutations in the MADS-box gene Soly12g038510. The first allele derived from the Galapagos Island accession 
(LA0166) contained a single nucleotide polymorphism (SNP) introducing a stop codon; the second allele was due 
to a Rider transposon insertion in the first intron of the gene.

The Soly12g038510 gene was previously named SlMBP21 by Liu et al.11 and described as a new gene from 
the MADS-box family, involved in the formation of the flower pedicel AZ. The authors however excluded the 
implication of SlMBP21 in the jointless phenotype of j-2 mutants because the genomic interval in the previous 
tomato genome assembly version (Sl2.40 ITAG 2.3) was incorrect. Here, we genotyped two natural j-2 mutants 
and produced CRISPR-Cas9 edited lines demonstrating that SlMBP21 is the J-2 gene.

In situ hybridization revealed two waves of J-2 expression, first in the flower meristems, and later in the AZ. 
Branching of the tomato inflorescence was previously shown to depend on the temporal rate at which flower 
meristem maturate28. According to this temporal regulation, the increased branching in j-2 could be interpreted 
by a deceleration of flower development in the mutant whereas the opposite was described for the other jointless 
mutant j17. The j mutant indeed produces less flowers than WT and reverts to leaf production7, 9, 29. Interestingly, 
j mutation was epistatic to j-2 as previously reported22. Given that J and J-2 proteins interact physically11, 12 these 
results suggest that these MADS-box transcription factors might balance the rate of meristem maturation in the 
inflorescence and have additive effects. Further analyses are required to test this hypothesis since the inflorescence 
phenotype was uncoupled from the lack of AZ in the CRISPR/Cas9 lines.

Breeders have introgressed j-2 mutations from donor parents into elite lines and this might have conducted 
to linkage drag. Indeed the j-2 lines obtained through CRISPR/Cas9 inactivation showed that inflorescence and 
flower traits might not be associated with j-2 phenotype in LA0315 and LA3899 but might be the result of linkage 
drag. Now that the identity of J-2 gene is validated, it will be possible to engineer allelic series of Soly12g038510 
and test them for AZ phenotypes as well as other side effects such as water flow through the AZ that was identified 
as a bottleneck for the use of j-2 in large fruited varieties of tomato3.

Ito et al.14 proposed that a tetramer of MADS-box proteins including J, SlMBP21, MC and an unknown fourth 
partner regulates pedicel AZ formation. Interestingly, an additional gene was found by Joubert30 and assigned as 
jointless-2 with incomplete action (j-2^in) because absence of the AZ was only observed at the onset of fruit ripen-
ing30. At the difference of j-2, plants containing j-2^in do not show elongated peduncle and slow fruit ripening, and 
hence may be also suitable for breeding programs. The gene causing the j-2^in mutation remains unknown but 
together with J-2 could be the key for tomato resistance to drought because it has been shown that the absence of 
AZ in flower peduncle increases water transport and thus allows to reduce watering during production31.

Figure 6. Expression levels of genes involved in the formation of the abscission zone of the flower pedicel in j-2 
mutant (LA0315), relative to WT. J (JOINTLESS), MC (MACROCALYX), GOB (GOBLET), LeWUS (WUSHEL), 
Blind (Bl) and Ls (LATERAL SUPPRESSOR). Bars = SDVE.
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Methods
Plant material and growth conditions. Seeds were germinated in a mix of peat compost brill (85%) and 
clay (15%) at 20 °C. After two weeks, seedlings were transplanted into individual pots filled with a mix of peat 
compost brill (75%): clay (15%): perlite (10%). Experiments were carried out in growth cabinets in 16-h photo-
period, 100 (‘low’) or 200 (‘high’) µmol m−2 s−1 light fluence rate at leaf canopy level (V.H.O. Sylvania fluorescence 
tubes), 20 °C, 70% relative humidity. Plants were watered daily with tap water and fed every two weeks with 12-12-
17 N-P-K fertiliser (Compo, Benelux N.V.).

Genomic DNA and total RNA preparation. Tomato genomic DNA was extracted from plant inflo-
rescences using the DNeasy Plant Mini kit (Qiagen), and pooled in equimolar ratio. Total RNA was extracted 
from flower pedicels (at anthesis stage) using the RNeasy Plant Mini kit (Qiagen), including DNase treatment 
with RNase-free DNase (Qiagen) according to the manufacturer’s instructions. First-strand cDNA synthesis 
was performed using 1 µg of total RNA with the SuperScript II First-Strand Synthesis System with oligo(dT)20 
(Invitrogen).

Genotyping of j-2 natural mutants. Five different segments of the J-2 locus were amplified using the 
Phusion High-Fidelity DNA Polymerase (New England Biolabs). PCR products were analyzed in 1% agarose gels 
in TBE buffer and visualized with ethidium bromide. Images were acquired with the imaging system E-Box UX5 
version 15.11 (Vilber, Marne-la-Vallée, France). The annealing temperature for amplification was 58 °C during 
34 total cycles. PCR fragments were sequenced from genomic DNA of WT and j-2 mutants. The specific primers 
sequences are given in Supplementary Table S2.

Transposon amplification and cloning. Primers located in the 5′UTR and first intron of the J-2 locus were 
used to amplify the DNA segment containing the Rider transposon. Amplification time was set up at 4 min at 72 °C 
using j-2 (LA3899) DNA as matrix and the iProof High-Fidelity DNA Polymerase (Bio-Rad). Amplified fragment 

Figure 7. Phenotype of single j mutant and double j j-2 mutant. (a) Leafy inflorescence of j mutant. (b) Leafy, 
branched inflorescence and elongated fruits in the j j-2 line obtained by Philouze22. Scale = 1 cm. (c) Expression 
levels of J-2, J and MC in j mutant, relative to WT (var. Gardener). (d) Expression levels of J-2, J and MC in j j-2 
mutant, relative to WT (var. Pearson). J-2 (SlMBP21), J (JOINTLESS), MC (MACROCALYX). Bars = SDVE.
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was subsequently cloned into the pGEM-T Easy vector (Promega) and subjected to sequence analysis. Sequences 
were annotated using blast search against the SOL Genomics Network (SGN; https://solgenomics.net/).

Quantitative PCR. Quantitative RT-PCR was performed with 20-fold diluted cDNA using SYBR Green 
Supermix (Bio-Rad) and gene-specific primers. The gene used as control (Solyc03g115810) encodes a vacuolar 
fusion protein (VAC)11, 18. Two biological replicates and two technical replicates were analyzed using the CFX384 
Real-Time PCR System (Bio-Rad). Primers used in this study are listed in Supplementary Table 2.

Methylated-DNA Immunoprecipitation-qPCR. Genomic DNA was isolated from WT and j-2 
(LA3899) mutant flower pedicels as previously described and fragmentation was performed using Diagenode 
Bioruptor 200 UCD-300 (30 s then off 90 s for 25 cycles, low power position). Following steps were performed 
using Diagenode Auto hMeDIP KIT in the SX-8G IP-Star® Compact System. Anti-5-methylcytosine antibody 
(NA8133D3, Merck Millipore, Diagenode) was used for precipitation. DNA was then purified using Auto Ipure 
kit v2 (Diagenode). MeDIP-qPCR was performed by the same methods as the RT-qPCR using the purified immu-
noprecipitated DNAs as templates. Primers used for MeDIP-qPCR are listed in Supplementary Table 2.

In situ hybridation. Inflorescence meristems for in situ hybridization were dissected and fixed with 2% PBS 
followed by ethanol dehydration baths. In vitro–transcribed RNA probe for J-2 was generated from full-length 
cDNA clones, and transcript was detected using standard in situ hybridization techniques. Primers for probe 
amplification are provided in Supplementary Table 2.

CRISPR/Cas9 gene editing. CRISPR/Cas9 gene editing was performed as described previously32, 33. 
Briefly, two single-guide (sg)RNAs binding to the coding sequence of the target gene were designed using the 
CRISPR-P tool (http://cbi.hzau.edu.cn/cgi-bin/CRISPR)34. Vectors were assembled with the Golden Gate cloning 
system35. sgRNA1 and sgRNA2 were cloned downstream of the Arabidopsis U6 promoter in the Level 1 acceptors 
pICH47751 and pICH47761, respectively. Level1 constructs pICH47731-NOSpro::NPTII, pICH47742-35S:Cas9, 
pICH47751-AtU6pro:sgRNA-1, and pICH47761-AtU6::sgRNA-2 were assembled in the binary Level 2 vector 
pAGM4723. Binary vectors were transfected into tomato cultivar M82 by Agrobacterium tumefaciens-mediated 
transformation36. After in vitro regeneration, plants were transplanted into soil, and acclimated under transpar-
ent plastic domes in the greenhouse for 5 days. A total of 8 first-generation (T0) transgenics were genotyped for 
induced lesions using forward and reverse primers flanking the sgRNA target sites. PCR products were separated 
by gel electrophoresis and T0 plants with visible lesions were self-pollinated. The T1 generation was genotyped 
and PCR products were cloned into pSC-A-amp/kan vectors (StrataClone Blunt PCR Cloning Kit, Stratagene). 
Five clones per PCR product were sequenced using M13-F and M13-R primers.
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