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ABSTRACT
Pollination is traditionally regarded as a quintessential mutualism, yet many plants employ deceptive strategies to achieve

reproductive success. Among the most intriguing is sexual deception, wherein flowers mimic the sex pheromones and visual

signals of female insects to attract male pollinators—without providing any reward. This strategy, most notably observed in

orchids, is a powerful driver of diversification and speciation. Recent advances in genomics, metabolomics, and high‐resolution
imaging are shedding light on the genetic and biochemical mechanisms underpinning these complex mimicry systems.

Remarkably, subtle genetic modifications and the repurposing of existing gene networks can give rise to highly specialized and

effective forms of deception. Central to this process are volatile organic compounds (VOCs), which serve as species‐specific
semiochemicals that manipulate innate pollinator behaviors and reinforce reproductive isolation. This review synthesizes

emerging insights into floral semiochemistry and highlights its broader applications in pollinator surveillance, crop pollination

enhancement, and biodiversity monitoring. As global pollinator populations face increasing threats, understanding floral

chemical ecology offers promising avenues for designing pollinator‐friendly crops and advancing tools in synthetic ecology.

1 | Plants, Pollinators, and Deception

Coevolution has long been regarded as one of the major pro-
cesses creating biodiversity (Ehrlich and Raven 1964; Suchan
and Alvarez 2015). For at least the last 100 million years
(Cardinal and Danforth 2013), pollinators have coevolved with
plants, ensuring the collection of food, while securing plant
reproduction and fitness. Yet, what happens when this mutu-
alistic interaction is not respected by one of the partners? A
paradigmatic example of deceptive pollination which includes
food or sexual deception (Jersáková et al. 2006). Sexual decep-
tion is a pollination strategy in which flowers mimic the sex
pheromones and appearance of female insects to attract male
insect pollinators. Cunningly, the deceptive plants use sophis-
ticated complex traits with a combination of olfactory, visual,

and morphological mimicry (De Jager and Peakall 2016; Wong
et al. 2022; Perkins et al. 2023; Phillips et al. 2024), with floral
odor signals playing major roles in these interactions (Schiestl
et al. 2004; Phillips and Peakall 2018). As a result, often, but not
necessarily, pollination occurs during attempted copulation
with the flower (Ayasse et al. 2003; Bohman et al. 2016). Among
pollinators, numerous insect groups, such as male bees and
wasps (Bohman et al. 2016; Peakall et al. 2020), fungus gnats,
and beetles, among others (Cohen et al. 2021; Hayashi
et al. 2021), are deceived by this trickery.

Insect pollinators are crucial for the productivity of agricultural
systems, with 75% of crop species and 35% of global crop pro-
duction being dependent on insect pollinators (Klein et al. 2007;
Powney et al. 2019; Slavković et al. 2021). From the economic
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perspective, the pollination services provided by insect pollina-
tors have an estimated value of US$29 billion in the USA
(Calderone 2012) and range widely from US$195 billion to ~US
$387 (US$267–657) billion per year worldwide (Porto et al. 2020).
Among commercially important crops that employ deceptive
pollination strategies is Vanilla sp. (Pansarin 2022), the fruits of
which are almost exclusively produced by hand pollination,
since, under natural conditions, the fruit set is low due to the
scarcity of pollinators (Soto‐Arenas 1999). Having in mind pol-
linator decline in different regions (Goulson et al. 2015; Powney
et al. 2019; Gray et al. 2019), studying plant‐pollinator interac-
tions is critical and timely (European Commission, Directorate‐
General for Environment, Pollinators – Importance for nature
and human well‐being, drivers of decline and the need for
monitoring 2020; Slavković and Bendahmane 2023). In this
review, we summarize recent advances in semiochemicals (SCs)
and floral mimicry used in deceptive pollination sensu lato, dis-
cuss their applications in agriculture and conservation studies
and suggest future research directions.

2 | Research on SCs: Then and Now

Research about the role of floral volatile organic compounds
(VOCs) in the pollination strategy of sexual deception has almost
a century long history (Bohman et al. 2020a). One of the earliest
reports was documented in 1927 by Edith Coleman who found
that Australian Cryptostylis orchids were exclusively pollinated
by the males of an ichneumonid wasps (Peakall 2023). Several
decades later, in 1948, Kullenberg started a multidecade study of
an orchid Ophrys (Kullenberg 1961). Impressively, in Orchida-
ceae, about one‐third of the estimated 18500 species are thought
to be pollinated by deceit (Cozzolino and Widmer 2005) sug-
gesting an important role of floral deception and specialization in
species diversification (Cozzolino and Widmer 2005; Ayasse
et al. 2011). In the last 20 years, a remarkable progress has been
made on the subject and the research continues to grow (Perkins
et al. 2023). First confirmed reports of sexual deception outside
the Orchidaceae have recently been described in ornamental
crops of Asteraceae (Ellis and Johnson 2010) and Iridaceae
(Vereecken et al. 2012) showing that pollination by deceit is not
foreign to other plant families. Until today, pollination by sexual
deception has been reported in various parts of the world, with
four centers of sexually deceptive plant diversity including
Oceania, Europe, Africa and South America (Peakall 2023).

Today, the availability of state‐of‐the‐art ‐omics technologies
(e.g. genomics, transcriptomics, proteomics, metabolomics)
sheds new light on our understanding of the biosynthesis of
specialized metabolites involved in plant‐pollinator interaction.
In addition, high‐precision imaging facilities such as micro-
computed tomography allow for detailed three‐dimensional
phenotypic analyses of floral morphologies in the context of
plant‐pollinator interactions (Begot et al. 2022). Recently, the
molecular basis of several sexually deceptive flowers has been
described (Sedeek et al. 2013; Xu et al. 2017). In addition, recent
studies have unraveled the genetic basis of species‐specific dif-
ferences in floral scent variation in sexually deceptive Ophrys.
Namely, two specific stearoyl–acyl carrier protein desaturases,
SAD2 and SAD5, were identified as key contributors to repro-
ductive isolation (Xu and Schlüter 2015), while amino acid

change in SAD5 enabled mimicry of the pollinating bee Colletes
cunicularius sex pheromone (Sedeek et al. 2016). Similarly,
specific SAD homologs caused a difference in alkene double‐
bond positions responsible for reproductive isolation between
O. exaltata and closely related species O. sphegodes (Xu
et al. 2012). These data showed that even minor mutations in
the underlying genetic networks are sufficient to drastically
affect mimicry (Xu and Schlüter 2015; Sedeek et al. 2016;
Kellenberger et al. 2023), which corroborates that minor
changes in floral odor bouquets are prerequisites for pollinator
shifts and speciation events (Vereecken et al. 2010). This year
(2024), the genome of the early spider‐orchid Ophrys sphegodes
was published, providing evidence that gene duplication con-
tributed to the evolution of chemical mimicry. Moreover, the
authors reported a highly differentiated genomic candidate
region for pollinator‐mediated evolution (Russo et al. 2024). The
evolution of sexually deceptive flowers requires orchestrated
changes in several genetic networks altering multiple unrelated
floral features, which classifies sexual deception as a composite
novelty (Kellenberger et al. 2023). The genetic network con-
trolling mimicry in sexually deceptive South African beetle
daisy (Asteraceae) is shown in Figure 1. Strikingly, this recent
publication suggested that the integration of multiple co‐opted
genetic elements facilitated the rapid evolution of complex petal
spots that mimic female bee‐fly pollinator (Kellenberger
et al. 2023). First, co‐option of iron homeostasis genes is asso-
ciated with altered petal spot pigmentation, similar to that of
female pollinators, which requires antocyanin‐regulating MYB‐
bHLH‐WD40 TF complexes (Yan et al. 2021). Second, co‐option
of the root hair gene GdEXPA7 elicited copulation responses
from male flies, and third, co‐option of the miR156‐GdSPL1
transcription factor module altered petal spot placement,
resulting in better mimicry of female flies. These findings suggest
that, in sexually deceptive flowers, a modular integration of
multiple independently co‐opted genes can speed up the evolu-
tion of complex phenotypic novelties (Kellenberger et al. 2023).

When it comes to floral volatiles, current theory predicts that
chemical communication can arise from compounds primarily
evolved for noncommunicative purposes, as insect pheromones
originated from extant precursor compounds being selected for
information transfer (Stökl and Steiger 2017). In floral mimicry, a
key gene for signal production has evolved by gene duplication
from a housekeeping gene involved in fatty acid metabolism
(Schlüter et al. 2011). Similarly, many volatiles, pigments, and even
some rewards are thought to have shifted from a primary defense
function to the attraction of pollinators (Borghi et al. 2017).

3 | Chemistry of Deception: The Nature of
Inviting

The chemical structure of insect pheromones is widely diverse
(Rizvi et al. 2021) and therefore it is not surprising that SCs used
in mimicry come in a variety of forms. According to their
chemistry and biosynthesis, floral volatiles have been classified
into a few basic categories, namely: fatty acid derivatives, ter-
penoids, benzenoids/phenylpropanoids and N‐ and S‐ bearing
compounds (Vivaldo et al. 2017; Dötterl and Gershenzon 2023;
Muhlemann et al. 2014). Thus far, among orchid species, the
reported SCs involved in sexual deception span across all the
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major classes of VOCs i.e.: fatty acid derivatives—alkanes, al-
kenes, alcohols, carboxylic acids, esters, lactones; isoprenoids—
monoterpenes, diterpenes, sesquiterpenes; benzenoids and
phenylpropanoids (Perkins et al. 2023). In addition, the mole-
cules involved in sexual deception ranged from long‐chain hy-
drocarbons, hydroxy acids, keto acids, to volatile esters and
pyrazine derivatives. For example, alkanes and alkenes are
known as components of the sex pheromone mimicry
across bee‐ pollinated Ophrys (Table 1) (Perkins et al. 2023). In
Australian sexually deceptive orchids, hydroxymethylpyrazines
and a β‐hydroxylactone (drakolide) have been identified as pol-
linator attractants in Drakaea sp. (Bohman et al. 2014; Bohman
et al. 2020b). In Drakaea glyptodon, pollinators are attracted
with a blend of alkylpyrazines and hydroxymethylpyrazines
(Bohman and Peakall 2014; Bohman et al. 2014). Moreover,
acetophenones and monoterpenes have been identified as polli-
nator attractants in Caladenia plicata (Xu et al. 2017), and tet-
rahydrofuran acid derivatives in Cryptostylis ovata (Bohman
et al. 2019). Not long ago, methylthiophenol compounds

(Table 1) were added to the list. These phenolic compounds were
not known as SCs in any other organisms, nevertheless, as they
are perceived by thynnine wasps, they may represent an
important class of SCs within the Zaspilothynnus and Campy-
lothynnus and many other orchid‐pollinating wasps (Bohman
et al. 2017; Bohman et al. 2018a). Outside of the Orchidaceae, the
Serapias and the Oncocyclus irises (Iridaceae) attract their polli-
nators through sexual deception via pseudocopulation, with this
evolutionary transition hypothesized to be influenced by the
specific ratio of of n‐alkanes and n‐alkenes in their floral scent
(Vereecken et al. 2012). A list of recently studied plant SCs
published from 2013 to 2023 is shown in Table 1 and will be
discussed in the following section.

4 | A Single Component or Rather a Bouquet

Chemical signals may be made up of multi‐component blends,
requiring pattern recognition at the receiver site or they may

FIGURE 1 | Genetic control of mimicry in sexually deceptive flowers. Model adapted from Kellenberger et al. 2023 on Gorteria diffusa which

includes co‐option of genes involved in iron homeostasis, flavonoids biosynthesis, phase transition and cell structure genes. Iron homeostasis genes

associated with petal spot pigmentation include OBP3‐RESPONSIVE GENE ORG1; ORG2 (bHLH038) which induces the expression of many iron

uptake genes, including FERRIC REDUCTION OXIDASE 2 (FRO2); OLIGOPEPTIDE TRANSPORTER 3 (OPT3) and VACUOLAR IRON TRANS-

PORTER 1 (VIT1). Genes involved in anthocyanin and flavonoid biosynthesis pathways reported in Gorteria diffusa are CHALCONE SYNTHASE

(GdCHS), DIHYDROFLAVONOL 4‐REDUCTASE (GdDFR), ANTHOCYANIDIN SYNTHASE (GdANS), UDP‐GLYCOSLYTRANSFERASE (GdUGT),

ANTHOCYANIN 3‐O‐GLUCOSIDE‐6″‐O‐MALONYLTRANSFERASE (Gd3MAT). In addition, GdbHLH, GdMYB7, and GdMYBSG6 are homologous

to characterized TFs from other species, which form the anthocyanin‐regulating MYB‐bHLH‐WD40 TF complexes. The miR156‐GdSPL1 tran-

scription factor module controls petal spot placement, while expansin gene EXPA7 positively regulates the formation of enlarged papillate petal

epidermal cells. [Color figure can be viewed at wileyonlinelibrary.com]
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represent single compound systems that afford specialist
receptors. On the one hand, some flowers e.g. Ophrys produce
complex species‐specific mixtures of more than 100 compounds
(Ayasse et al. 2011). On the other hand, attraction can be
achieved by combinations of only a few chemical compounds,
as in the case of Ophrys speculum which attracts its pollinator,
Campsoscolia ciliata, with a mix of just eight compounds
(Ayasse et al. 2003). While the biosynthesis of a unique com-
pound requires a special set of enzymes, the formation of a
qualitatively and quantitatively well‐defined blend of more or
less ubiquitous compounds of closely related chemical struc-
tures may simply require fine‐tuning of enzymes already ex-
pressed in that species (Ayasse et al. 2011).

A recent study compared floral VOCs of 9 different plant species
that are predominantly visited by honey bees and bumblebees.
While comprising different volatile bouquets, flowers of all
species had one thing in common ‐ E‐β‐ocimene, a principal
component for attracting both honey bees and bumblebees
(Dekebo et al. 2022). Since many years, E‐β‐ocimene has been
known to act as a brood pheromone of honey bees with high
occurrence in floral scents (Dekebo et al. 2022). In addition, this
study reported that Ailanthus altissima flowers contained
monoterpenes β‐linalool (39.1%) and hotrienol (32.1%) as pre-
dominant compounds (Dekebo et al. 2022). Namely, linalool is
produced in mandibular glands of solitary bees and bum-
blebees, and acts as a pheromone that causes the males to
aggregate (Borg‐Karlson et al. 1996).

In their recent work, Bohman and colleagues discovered that plants
use blends of chemically unrelated compounds as sexual attractants
(Bohman et al. 2022). Notably, to attract male Zeleboria sp. wasp
pollinators, orchid Drakaea micrantha uses a blend of three com-
pounds consisting of a β‐ketolactone (drakolide 1) and two specific
hydroxymethylpyrazines 8 and 9. This floral bouquet was shown to
be attractive only if required both a pyrazine and drakolide 1
(Figure 2A&B). Furthermore, experiments with drakolide stereo-
isomers featuring substituents at positions 3 and 6 resulted in
reduced sexual behaviour and varying levels of attractiveness
(Figure 2C). Interestingly, treatments with drakolides 2 and 3 with
the same C‐3 methyl group as 1, elicited some activity, including
pollinator landing and copulation. The activity further declined
with drakolides 4 and 5, while the activity was minimal with the
substitution of a propyl group at C‐3 in drakolides 6 and 7. Simi-
larly, variation of the substituent on C‐6 also adversely affected
attractiveness (Figure 2C) (Bohman et al. 2022). It remains
unknown as to how two different biosynthetic pathways were co‐
opted in the highly specific pollination of the sexually deceptive
Drakaea micrantha and its pollinator. One hypothesis could be a
general model for pollinator‐mediated speciation by Peakall and
Whitehead, which assumes that gene duplication and/or allelic
variation underpins pollinator switching (Peakall and
Whitehead 2014). In this case, neutral mutations could diffuse
through populations where they become available for the use and
subsequent selection by a second pollinator (Bohman et al. 2022).

5 | SCs as a Tool for Pollinator Conservation

What can we learn from SCs? SCs and specifically insect phero-
mones have a tremendous potential as monitoring tools in

biodiversity and conservation research, particularly for en-
dangered species, which has only been realized to a limited extent
(Larsson 2016). Pheromone‐based trapping systems have been
proven useful for monitoring rare and threatened saproxylic bee-
tles and their predator (Larsson and Svensson 2009) and could also
be implemented on rare pollinators (Figure 3, conservation
monitoring). At the population level, SCs would provide an ex-
cellent means of monitoring population changes, identifying bio-
diversity hotspots and habitat thresholds for persistence of target
species (Larsson 2016; Figure 3). Today, studies on SCs and
pheromones in pest management prevail (Su et al. 2020; Liu
et al. 2024), while only a few pheromones have been developed for
biodiversity and conservation studies, including the identification
and application of pheromones specifically for population mon-
itoring (Larsson 2016). The attractiveness of many insect phero-
mones could facilitate monitoring at an unprecedented
spatiotemporal resolution with great efficiency (Larsson 2016),
and being sustainable and easily integrated, this approach would
greatly aid in pollinator monitoring and conservation.

From the pollinator conservation perspective, studying Ophrys
sp. is valuable having in mind the available genomic data and

High attractiveness

pyrazines with drakolide stereoisomers

FIGURE 2 | Sexual attraction of the male Zeleboria sp. pollinators

by floral blends of a β‐ketolactone drakolide 1 and hydro-

xymethylpyrazines in Drakea micrantha. The blend is only attractive to

the pollinating wasps when it contains both the drakolide 1 and a

pyrazine (A), while the two compounds presented alone do not attract

pollinators (B). Blends of pyrazines with drakolide stereoisomers

showed dosage effect on sexual behavior and attractiveness (C). [Color

figure can be viewed at wileyonlinelibrary.com]
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the fact that most Ophrys sp. produce hundreds of chemical
compounds (Ayasse et al. 2011), and thus have the evolutionary
potential to switch pollinators. Since most crops rely on a single
pollinator ‐ the honey bee, it would be critical to identify and
investigate diverse pollinator species for insect‐pollinated crops
and determine which volatiles play key roles in attracting these
alternative pollinators. Certainly, one of the important ad-
vantages of SCs is their high species specificity, often achieved
by a combination of structurally similar molecules in a precise
ratio, and related to their roles in mate communication and
reproductive isolation. Last but not least, the biological efficacy
and economic feasibility of pheromone production has also
been recently demonstrated in plant factories by metabolic
engineering (Wang et al. 2022).

One of the unanswered questions is whether the cultivated crops,
which have undergone multiple domestication events and have
been selected to improve yield, have also been altered in their
volatile profiles and thus communication with pollinators.
Notably, flower enlargement due to domestication has been re-
ported to increase pollinator visitation rates (Chen et al. 2018;
Sapir 2009), but how has this influenced plant‐pollinator
coevolution requires further research. For example, a recent
study compared the floral attributes and visitor interactions
between sister taxa of domesticated and wild Cucurbita species,
finding that the domesticated taxa had larger floral character-
istics, higher pollen quantity, and a higher protein‐to‐lipid ratio,
with Eucera spp. being most likely to visit all Cucurbita taxa
(Glasser et al. 2023). Moreover, studies on highbush blueberry
(Vaccinium corymbosum L.) have shown that crop domestication
significantly alters the chemical composition of nectar and pol-
len, while reducing pollen chemical diversity in cultivated plants
compared to wild ones, with potential negative implications for

pollinator health via changes in pathogens. Another fascinating
example of a direct influence of genetic variation on plant‐
pollinator interactions has been reported in monkeyflowers
(Mimulus spp.), in which variation in the YELLOW UPPER
(YUP) gene caused changes in flower color patterns that in turn
drive speciation with shifts in whether the flower is pollinated by
bees or by hummingbirds (Liang et al. 2023). To date, the
research on the effects of domestication on floral reward chem-
istry and plant‐pollinator interactions remains limited. To ensure
long‐term sustainability in agroecosystems, one of the aims of
plant breeding strategies should be to identify and prioritize the
“pollinator‐friendly” genotypes for a variety of insect species
(Figure 3, Pollinator conservation strategy).

6 | Concluding Remarks and Future Perspectives

Deceptive pollination strategies showcase the intricate interplay
between sensory exploitation and adaptive evolution. Yet, beyond
their ecological intrigue, these strategies hold unexplored
potential for conservation, agriculture and biotechnological ap-
plications. As pollinators face alarming declines, understanding
plant‐pollinator interactions at the chemical level is no longer a
purely academic pursuit—it is a necessity for ecosystem stability
and food security.

Future research should prioritize the discovery of novel SCs and
the elucidation of their ecological roles, particularly in shaping
pollinator learning, adaptation, and plant speciation. One major
direction involves identifying the genetic and metabolic pathways
underlying SC production and understanding how small genetic
changes can alter chemical signals and influence pollinator
behavior. Investigating how pollinators perceive, process, and

�

�

�

��

�

�

�

�
“pollinator a�rac�ve” habitats)

�

�

�

FIGURE 3 | Applications of SCs in biodiversity research, agroecology and pollinator conservation. In biodiversity research, by mediating

communication between organisms, SCs can aid in monitoring rare and endangered insect species and could be used for mapping pollinator hotspots

and diversity patterns. Additionally, SCs can enhance pollination efficiency by influencing pollinator attraction and behavior. Agroecology. The use

of SCs in pollinator research enables noninvasive assessment of pollinator health, distribution, and species diversity across habitats. Integrating SC‐
based tools with conservation strategies enhances monitoring and preservation efforts in both natural and agricultural landscapes. Pollinator

conservation strategies. Strategies aimed at pollinator conservation incorporate the development of pollinator‐supportive plant varieties including
the conservation of non‐Apis pollinators and synthetic SCs. Furthermore, SCs are a powerful tool that could help address key questions about the

evolution of behavior, speciation, adaptation, and coevolution. [Color figure can be viewed at wileyonlinelibrary.com]
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retain these cues—especially how they learn and remember
them—will provide valuable insights into the effectiveness of plant
deception and its ecological consequences. There is also a need to
explore how deceptive strategies shape, and are shaped by, evo-
lutionary pressures in plant‐pollinator relationships, particularly
within complex ecosystems. Metabolomics and other omics tech-
nologies offer powerful tools to discover new signaling compounds
and link them to ecological outcomes and adaptive benefits. On
the applied side, research should investigate how synthetic ver-
sions of SCs might enhance pollination services in agriculture,
particularly where natural interactions have been disrupted. Such
tools could be used to guide pollinators more efficiently to crops or
ecological restoration sites. Moreover, incorporating chemical
signaling knowledge into conservation strategies may also
improve habitat restoration by increasing floral attractiveness to
key pollinators. Lastly, it is essential to understand how environ-
mental factors—such as climate change, pollution, and land‐use
shifts—impact both the emission and perception of SCs.

Beyond scientific inquiry, there is an urgent need for inter-
disciplinary collaboration. Chemists, geneticists, ecologists, and
conservationists must work together to develop pheromone‐
based conservation strategies, create pollinator‐friendly agroe-
cosystems, and explore synthetic biology applications for pest
and pollinator management. While multi‐omics technologies
and high‐resolution imaging technologies have propelled our
understanding of pollination strategies, integrating these fields
with behavioral ecology and evolutionary biology will be pivotal
to future progress. Finally, engineering crop species to produce
specific SCs opens a virtually limitless realm of research, with
the capacity to substantially enhance pollinator attraction and
enable more sustainable pest management.
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